C IRSSE—R-78

TECHNICAL REPORTS

DINIVERSITY COLLECTION NAGW-1333
NASA-CR-192738
nunr) me’QYS
T sk ROV o

C;/ A
(NASA-CR-192738) A N93-71633 L,
CONNECTIONIST/SYMBOLIC MUDEL FGR / = '//Q;
PLANNING ROBOTIC TASKS (Rensselaer ‘ -~
Polytechnic Inst.) 24% p : Unclas 9 - 7 .

«

¢ ‘¥ ¥ T F 19/63 0153764

(S TQJE

Center for Inteligent
Robotic Systems
for Space Exploration

Rensselaer Polytechnic Institute
Troy, New York 12180-3590

intcal Reports §TY
':lizt:?leer‘n: and Prysical folonces Library

Un:ve.c-ty Qf coryland
Gollege Park, Meryland 20742

A CONNECTIONIST/SYMBOLIC MODEL
FOR
PLANNING ROBOTIC TASKS

by

Michael Craig Moed

Rensselaer Polytechnic Institute
Electrical, Computer, and Systems Engineering
Troy, New York 12180-3590

December, 1990

CIRSSE REPORT #78

LISTOF TABLES i i i it e e et e e et e e e i e e e < ... Vi
LIST OF FIGURES it i it e e e e e e e e i e e e e e vii
ACKNOWLEDGMENT e ettt e e X
ABSTRACT . . . o e e e e e e e e e e e xi
1. INTRODUCTION et e e e e e e e e 1
1.1 Introduction e e e 1
1.2 Problem Statement e 2

1.3 Methodof Approach 3

1.4 Organizationof the Thesis 4

1.5 Contributions Lo 6

2. PROBLEM INTRODUCTION AND LITERATURE REVIEW. 8
21 Target World e 9
2.2 PlanningModels oo 10
2.3 Evaluation Functions for Robotic Planning Systems 15
2.4 Symbolic Structure andthe ARM 20
24.1 Agentclasses oo 20

242 GeneralRules L o oL 22

243 SpecificRules 23

2.4.4 Limitations of this representation 24

25 The ARMasaModel. 26
2.5.1 Trainingthemodel 27

2.5.2 The ARMasaneuralnetwork. 29

2.5.3 Choice of an ANN model for the ARM 33

2.6 Recall of RoboticActions, 35
2.7 Conclusions i e e 37

CONTENTS

1l

3. DESIGN OF THE ASSOCIATIVE RULEMEMORY 39
3.1 A Description of the Boltzmann Machine Model 41
3.2 Mapping the ARM onto a Boltzmann Machine 45

3.2.1 Specific rules and networknodes 45
3.2.2 Connection weights and the POE value 49
3.2.3 The topology of connection weights 51
3.24 Generalrulesandthe ARM 54
3.2.5 Higherordernodes 56
3.3 Trainingthe ARM 60
3.3.1 Training higherordernodes 64
3.3.2 Developing higherordernodes 66
3.4 Some TrainingExamples00, 70
3.4.1 Selection of training constants 77
3.5 Predicting POE Values for Untested Specific Rules 79
3.5.1 Untrained weights vs. zeroweights 80
3.5.2 Examples of predictioninthe ARM 81
3.6 Extensions to the ARM model 84
3.6.1 TheKnowledgeSet 85
3.6.2 The Confidence Factor 87
3.7 Conclusions e 89

4. ASSOCIATIVE RECALL - AN OPTIMIZATION TECHNIQUE 92
41 The ARM Energy Function 95
4.2 Two Optimization Techniques 95

4.2.1 Simulated Annealing 96
4.2.2 The Genetic Algorithm 97
4.2.3 Some initial experiments: comparing SA and GA optimization
techniques 98
4.3 Reducing the Search Time of a Genetic Algorithm 100
4.3.1 An introduction to immigration 100
4.3.2 Background and motivation 105
4.3.3 A GA with the Immigration Operator 106
4.3.4 The Implementation of Two Genetic Algorithms 109
4.3.5 TestSuiteof Functions 111

1

4.3.6 Description of Experiments
4.3.7 Experimental Results
4.4 Convergence of a GA using Immigration
4.5 Representation of Nodes for Genetic Optimization -
46 Finding Sets of High POE Robotic Actions
4.7 Contributions and Conclusions

. A BOLTZMANN MACHINE FOR THE ORGANIZATION OF INTELLI-
GENT MACHINES e e e e e e e e s

5.1 The Mathematical Theory of Intelligent Controls
5.2 Knowledge Flow and the Principleof IPDI
5.3 The Organization Level as a Boltzmann Machine.
5.4 Entropy as a Measure of Uncertainty

5.5 Contributions and Conclusions . . . « « v « v v v v v e

. ACASE STUDY e e

.6.1 The Task Analysis Methodology
6.2 CaseStudy Goal e
6.3 Design of the Case Study using the Task Analysis Methodology
6.3.1 The world mode! and symibol classes
6.3.2 A general rule grammar 000
6.3.3 The ARMnnetwork
6.4 Case Study Experiments
6.4.1 Experimental Procedure
6.4.2 Experimental Suite oL
6.4.3 Trainingresults oL
6.4.4 Examplesof Prediction
6.5 Associative Recall of Robotic Actions
6.5.1 Representationof Nodes
6.5.2 TheGAsearchprocess
6.5.3 Embodying planning constraints into the recall process . .
6.3.4 Experimental procedure
6.5.5 Experimental results: Efficiency of the GA

6.5.6 Experimental results: Optimal robotic actions

v

160

6.6 ConclusSions i e e e e e e e e e e e e e e e e e e e 209

7. CONCLUSIONS . . . ittt i e e e e e e i it e e e e e 211
7.1 Summaryand Conclusions 211
7.2 Recommendations for Future Research _. ... 213

APPENDICES . .+« o e eee e e et e e et e 225

A.SYMBOL DEFINITIONS it it i it et e e 225

B. SYMBOL CLASS HIERARCHY 229

3.1
6.1
6.2

LIST OF TABLES

Convergence and final error for test examples 76
Results of case study trainingsets 187
Results of case study associativerecall 203

vi

2.1
2.2
2.3
3.1
3.2
3.3
3.4
3.5
3.6
3.7
3.8
3.9
3.10

4.10

LIST OF FIGURES

ARM system block diagram 19
ARM system block diagram with rule database 28
ART architecture L L ... 31
Diagram of nodes for a tvpical ARM network 48
Diagram of asserted nodes for a typical ARM network. 50

Diagram of nodes and connections for a typical ARM network 53
Diagram of general rule inhibitions for a typical ARM network 3

Diagram of higher order nodes for a typical ARM network .. 59

A training example 72
A second trainingexample oL L. L. 73
A training example with higher ordernodes T4
A second training example with higher order nodes 75
Block diagram with ARM displayed 91
Best performanceof GA 101
Worst performanceof GA 101
Best performanceof SA 102
Worst performanceof SA. 102

ARM system block diagram with GA for associative recall . . 103
F1 - Average Number of Evaluations using Steady State GA . 122
F2 - Average Number of Evaluations using Steady State GA . 122
F3 - Average Number of Evaluations using Steady State GA . 123
F4 - Average Number of Evaluations using Steady State GA . 123

F3 - Average Number of Evaluations using Steady State GA . 124

F6 - Average Number of Evaluations using Steady State GA

F1 - Average Number of Evaluations using Restarted GA . .
F2 - Average Number of Evaluations using Restarted GA . .
F3 - Average Number of Evaluations using Restarted GA . . .
F4 - Average Number of Evaluations using Restarted GA . . .
F5 - Average Number of Evaluations using Restarted GA . . .

F6 - Average Number of Evaluations using Restarted GA . .

F1 - 0 Immigrations Per Generation
F1 - 2 Immigrations Per Generation.
F2 - 0 Immigrations Per Generation

F2 - 3 Immigrations Per Generation
F3 - 0 Immigrations Per Generation
F3 - 2 Immigrations Per Generation.
F4 - 0 Immigrations Per Generation

F4 - 1 Immigrations Per Generation

F5 - 0 Immigrations Per Generation

F5 - 3 Immigrations Per Generation.
F6 - 0 Immigrations Per Generation.
F6 - 1 Immigrations Per Generation
Encoding of Actor nodes forthe GA
Intelligent Machine Hierarchy
Organization Level of Intelligent Machine.
Task Analysis Methodology Flowchart
Case Study General Rules
Case Study General Rules.cont'd..

Input levels and nodes for case study network

vili

. 124
. 125
. 125

6.5
6.6
6.7
6.8
6.9
6.10
6.11
6.12
6.13
6.14
6.15
6.16
6.17
B.1
B.2
B.3

Output levels and nodes for case study network 177

Trainingset 1 e e 180
Trainingset 2 e e 181
Trainingset 3 o e 182
Trainingset 4 e 183
Trainingset 3 184
Trainingset 6 e 185
Trainingset T 185
Prediction using trainingset 1 189
Prediction using trainingset 3 190
Prediction using the combined training set 193
Representation example for agents in < robot > class 196
Representation example for agents in < fiz > class 197
Classification of agents in the world model 230
Classification of agents in the world model, cont'd 231
Classification of agents in the world model, cont’d 232

ACKNOWLEDGMENT

I wish to express my sincere gratitude to Robert Kelley, for the advice, encourage-
ment and support that he provided during the years I have spent at Rensselaer.

Special thanks go to Chuck Stewart, who sparked my interest in Genetic Al-
gorithms and worked with me to develop many of the concepts addressed in this
thesis. Thanks also goes to George Saridis who greatly aided in my development as
a PhD candidate and a colleague.

I would like to thank all my committee members for providing the guidance
and direction that allowed me to develop this work.

[am indebted to Robert O'Bara and Glenn Tarbox, primarily for their valued
friendship, but also for reading drafts of this thesis. Thanks also goes to Philippe
Jacob for his friendship during my Pennsvivania and Rensselaer tenure.

I would also like to acknowledge all the members of the old RAL and of CIRSSE
who made our labs an enjoyable place to work.

It is dificult to describe in these few lines the love and encouragement provided
by my parents, Annette and Richard, and my brother, Edward, throughout the
years. Without their support, I would not be where I am today.

Finall , [thank my fiancee’, Deborah, for her love, support and ;;utomobile
driving abilities. The last two years we've spent together make me look forward to

our next 50.

ABSTRACT

This work develops an evaluation system, called the Associative Rule Memory
(ARM), designed to operate with an interactive or automatic planner in a robot-
based world model. The ARM ranks alternative robotic actions based on the prob-
ability that the action works as expected in achieving a desired effect. The system
is experience-based, and can predict the probability of achieving a desired effect for
robotic actions that have not been explicitly tested in the past. The ARM is con-
structed to quickly and efficiently find high probability of effect robotic actions for
a given desired effect. The design of the ARM is based on a neural network called
the Boltzmann Machine, which is adapted for this work. An algorithm is presented
for training the ARM on tested robotic actions, and it is shown to globally converge
to an accurate representation of the training set. Also, the network is able to de-
velop hidden nodes that represent higher order relationships through the training
procedure. The Genetic Algorithm (GA) is used for associative recall on the ARM,
and is shown to be applicable to searching a Boltzmann Machine. An immigration
operator is added to the GA, and the modified GA is shown to be more efficient on
a test suite of functions. A proof is constructed that guarantees that the GA with
immigration will converge in probability to the optimum of a given function. The
use of the ARM as the Organization level of the Intelligent Machine is demonstrated.
The functions of the ARM are tested in the world of the NASA Flight Telerobotic

Servicer and results detailing accuracy and efficiency are presented.

CHAPTER 1
INTRODUCTION

1.1 Introduction

Automatic, computer-based systems have been developed to mimic the plan-
ning capabilities of people. These systems plan in an abstract model of the world
that does not capture all the features and details of the real world. The planners
concentrate on the significant aspects of objects in the world to reduce the difficulty
of plan formation. It is important, however, that the abstract model contain suffi-
cient detail, so that an automatically generated plan can be executed reliably in the
real world.

Some systems plan by using a divide and conquer strategy to recursively sep-
arate plan goals into subgoals, and then attempt to solve each subgoal of the plan.
Other systems plan in successive levels, by developing high level plans first, and
recursively expanding, detailing and ordering each item in the plan. Some systems
assign a cost to each step, and build a plan from the sequence of steps minimizing
the total plan cost.

In many world models, there exist several ways to accomplish a step in a plan.
If the world is sufficiently complex, the number of possible alternatives can become
quite large. When developing plans in such a world, the size of the search space for
the plan becomes combinatorially huge.

When people plan, they are often faced with a large number of possible alter-
natives for each plan step, yet are usually able to develop a sequence of planning
step:s quickly and efficiently. People are able to rule out many alternative steps
by using previous experiences to determine which candidate steps will work well.

When specific experience is lacking in a particular domain, a person attempts many

(3]

alternative plans, trying to relate previous experience to the new situation, until a
desired goal is achieved.

To limit the number of alternative steps in an automatic planning system, an
experience-based evaluation function can be applied to rank each of the candidate
steps according to some optimality criteria. Selecting the optimal step, or set of
near-optimal steps for possible plans would greatly reduce the planning search space.

It is possible that past experience may not cover a particular planning step.
In this case, it is necessary to predict the optimality of candidate steps by using
related experience of similar steps.

Since the number of possible steps can be quite large, however, ranking each
alternative can be rather time consuming. Instead, a search technique may be
employed to find an optimal step, or set of near-optimal steps quickly and efficiently.

This thesis develops an evaluation system designed to operate with an interac-
tive or automatic planner in a robot-based world model. The planning step in this
model is called a robotic action. The change that it should produce in the world
model is called a desired effect. The evaluation system ranks a candidate robotic
action based on the probability that it works as expected in achieving its desired
effect. T':: system is experience-based, and can predict the probability of achieving
a desired effect for robotic actions that have not been explicitly tested in the past.
A search technique is also present in the system that quickly and efficiently finds

optimal robotic actions for a given desired effect.

1.2 Problem Statement

- For a sufficiently complex world, an interactive or automatic planning system
may contain a large number of robotic actions that can achieve the same effect on
the world model. Since a large number of robotic actions leads to a large planning

search space, a method must be developed to reduce the number of candidates, for

a given desired effect. This method must:

1. Receive a desired effect as input from a user or automatic planning system.

!O

Evaluate and rank the robotic action candidates according to some optimality

criteria.

3. Quickly and efficiently search the set of candidates for an optimal robotic

action, or set of near-optimal robotic actions that achieve the desired effect.

4. Output the optimal robotic action. or a set of near-optimal robotic actions,

along with their evaluation function values.

For this study, we designate the optimality criteria to be the probability that
a robotic action achieves a desired effect. This will be called the probability of effect
value. Using this criteria with a sufficiently complex world model, it is apparent
that it is difficult to test all possible sets of robotic actions and effects to determine

their probability of effect values. Instead the method must:

1. Be provided with a set of tested robotic actions and effects along with corre-

sponding probability of effect values. This is called a training set.

2. Use this training set to predict probability of effect values for untested robotic

action/effect pairings.

The method must also show applicability to planning systems, including the
Organization level of the Intelligent Machine [1]. Finally, this method must demon-

strate these capabilities through a case study using a target robotic environment.

-

1.3 Method of Approach

The following approach is used to develop a system that solves the problem

stated above.

10.

11.

1.4

. A set of system requirements and constraints are outlined.

A grammar is defined to allow the sysiem to interface with a user or automatic

planner.

Several models are considered to form the evaluation function, which must be

trainable and provide predictive probability of effect values.

An evaluation function model is chosen based on its capabilities and described

in detail.

The architecture of the chosen model is specialized o fit the constraints of the

above problem.
A method for training the model to a desired degree of accuracy is developed.

The model is shown to demonstrate the ability to reliably predict probability

of effect values for untested robotic action/effect pairings.

Different techniques for searching for robotic actions given a desired effect are

examined given the constraints of the developed model.
Methods for specializing and accelerating the chosen technique are developed.

The search technique is modified so that it can provide sets of high probability

of effect robotic actions as output when given a desired effect as input.

A case study involving a complex target robotic environment is developed and

the capability of the system to perform as desired is demonstrated.

Organization of the Thesis

The thesis is organized as follows.

w

e Chapter 2. This chapter provides an in-depth introduction to the problem and
also presents a literature review of recent research in related areas. The target
world model for this thesis is described. Different evaluation functions are
discussed and necessary capabilities for an evaluation function model, called
the Associative Rule Memory, are defined. Input/Output and structural re-
quirements are defined for the model. Candidate neural network models are
reviewed to form the model of the evaluation function. A Boltzmann Machine
is chosen based on its capabilities. Different optimization techniques are also

reviewed.

o Chapter 3. This chapter develops the Associative Rule Memory model using
the formulation of a Boltzmann Machine. The theory behind the Boltzmann
Machine is reviewcu and critiqued. A specialized architecture based on the
Boltzmann Machine is developed to fit the requirements of the Associative
Rule Memory. A technique for training the model is developed and shown
to converge to the correct representation. Examples of training are provided
and the ability of the Associative Rule Memory to predict probability of effect

values for untested robotic action/effect pairings is shown.

e Chapter 4. This chapter examines search techniques for the Associative Rule
Memory. The requirements for a search technique are outlined based on the
constraints of the Associative Rule Memory. Simulated annealing and the
Genetic Algorithm are compared for search efficiency. A method to reduce
the search time of a Genetic Algorithm, called immigration, is described and
experiments are discussed. A proof is developed to show that a Genetic Al-
gorithm enhanced with the immigration operator will converge in probability
to the global optimum of a cost function. Representation issues are exam-

ined. Also, modifications to the Genetic Algorithm to allow it to find sets of

1.5

solutions are outlined.

Chapter 5: This chapter reformulates the Organization level of the Intelligent
Machine as a Boltzmann Machine and demonstrates that the Associative Rule
Memory can be used to form this level. An introduction to Intelligent Machines

is provided, along with a mathematical description of the Organization level.

Chapter 6: This chapter provides a case study using the Associative Rule
Memory in the world of the NASA Flight Telerobotic Servicer.

Chapter 7: This chapter discusses the overall system and presents the conclu-

sions of this thesis.

Contributions

The main contributions of the thesis are as follows.
The development of a model that will produce a set of optimal robotic actions

as output, given - =sired effect as input.

The design of a neural network model that is able to represent a symbolic

grammar comprised of a robotic action and effect.

. The ability of this model to maintain instantiations of the grammar with a real

valued number representing the probability that the robotic action achieves

the desired effect.

A training procedure that guarantees that the network will develop accurate
probability of effect representations for all robotic action/effect pairings in the

training set.

A training procedure that develops weighted connections in a neural network

that represent the extent to which a robotic action symbol affects an effect

symbol.

——

b |

6. A technique for adding higher order nodes to a neural network model when

necessary, and pruning them when they are unnecessary.

7. A demonstration that the training procedure builds neural network connec-
tions that can be used for predicting probability of effect values for untested

robotic action/effect pairings.

8. The development of the immigration operator for Genetic Algorithms and
the demonstration that immigration improves the performance of a Genetic

Algorithm on functions that possess difficult local optima.

9. The proof that a Genetic Algorithm combined with the immigration operator

will converge in probability to the global optimum of a cost function.

CHAPTER 2
PROBLEM INTRODUCTION AND LITERATURE REVIEW

Planning systems, whether automatic or interactive, attempt to develop a set of steps
that change the world model, or environment, from an initial state to a goal state.
Each step in the plan dictates an action, a set of agents that perform the action,
and a set of agents on which the action should be performed. In environments that
possess a large number of agents as well as a large number of possible actions, the
number of possible alternatives for any step in a plan becomes combinatorially large.
To reduce the planning search space that these alternatives produce, an evaluation
function can be applied to the set of alternatives, and a rank can be assigned to
each choice based on the likelihood that the choice will lead to a successful plan. By
selecting the best alternatives as possible planning steps, the combinatorial explosion
of plan choices is eliminated.

This chapter pegins the deveiopment of a particular planning evaluation tech-
nique, called the Associative Rule Memory (ARM), which is designed to rank and
select steps in a robotic planning system. The purpose of this chapter is twofold.
First, it serves to introduce the problem that this thesis addresses. Second, it
presents a literature review that describes recent research in related areas.

Section 2.1 of this chapter presents the target world model for our system. Sec-
tion 2.2 presents several automatic planning systems, and determines the necessity
of an evaluation function for large numbers of alternative steps. Section 2.3 discusses
different evaluation functions and dictates the capabilities that must be possessed
by-an evaluation function. Section 2.4 examines the inpt.lt/output and structural
requirements placed on an evaluation function to allow it to work within a planning
system. Section 2.5 reviews different neural network models that can be used for the

ARM. Optimization techniques for the ARM are presented and reviewed in section

2.6. Conclusions are presented in section 2.7.

2.1 Target World
The target world for this study is composed of

1. A set of actors which includes

(a) Manipulators
(b) Positioners

(c) Transporters
2. A set of objects which includes, but is not limited to

(a) Tools
(b) Platfor—=
(c) Pallets and Carriers

(d) Bays and Loading sites

It is possible for an actor to be used as an object. Together, actors and objects are
referred to as agents.

Each agent possesses a set of states. that describes features of the agent in
the world model. An actor can perform an action on an object, perhaps by using
another nbject, and the result is a change in the state of the first object. When
this occurs, the combination of actor, action and objects is said to perform a robotic
action. The change of state of the first object is said to be the ef fect. In the target
world, it is possible for many different robotic actions to achieve the same effect.
Thig allows redundancy in the world, which adds extra freedom to that way that
tasks can be performed.

The agents and actions of the world have been abstracted for planning and

modeling purposes, and are represented by symbols. The actor symbols are referred

10

to as ACTORs, object symbols as OBJs and action symbol as ACTIONs. A list
of symbols that are used in this study are presented in Appendix A. The agents and
actions used in this study are based on the world of the NASA Fight Telerobotic
Servicer Task Analysis Methodogy [2], as further described in Chapter 6.

2.2 Planning Models

One of the earliest planning systems was STRIPS [3]. The world model for
STRIPS is a set of first-order predicate calculus well-formed formulas (wffs) that
represent the state of agents in the world. STRIPS also consists of a set of operators
that, when applied, transform the world model into a new world model. Each
operator is composed of three parts: conditions, action, and effects. The conditions
dictate when the operator can be used and are comprised of wffs. The action is
simply a string representing the action in the real world. The effects dictate the
changes in the world model if the action is performed, and are a set of wffs that
determine which items from the world model should be added or deleted.

STRIPS combines Means-End Analysis [4] with logic resolution techniques to
develop a plan of actions to change the initial world model to a goal world model.

The basic procedure is as follows.

1. Find the wff agent state differences between the current world model and a

(sub)goal world model.

2. Construct a set of operators whose effects will eliminate some of these differ-

ences.

3 Select one operator from the set of candidates, instantiate it with agent sym-
bols available in the world model, and form new subgoals from the conditions

of this operator.

4. Eliminate those subgoals that can be resolved from the current model.

5. If the current model is not the same as the goal world model, go to 1.

Step 3, the selection and instantiation of an operator for application, is relevant
to our discussion. In STRIPS, a candidate operator is selected if the clauses on its
effect list can resolve away difference clauses between the current and (sub)goal
world models. The operator is then instantiated with agent symbols that allow this
resolution to occur.

For a reasonably complex environment, such as our target world model, there
may exist many operator instantiations whose add list can resolve away the same
difference clauses. This is due to the fact that in our target world, many different
robotic actions may lead to the same set of effects. This leads to a very large number
of candidate operators, all of which appear appropriate.

if each candidate operator is selected for application, the search tree would
grow geometrically. To prevent this, only a small subset of candidate operators
sho~uld be selected for apolication. To reduce the nur-~er of possible operators,
each must be evaluated and ranked according to some defined criteria. The highest
ranked operator or operators could then he selected for application. STRIPS does
not provide this functionality. Therefore. constructing a plan using STRIPS in our
target world may lead to a combinatorial explosion in the planning search space.

Another problem of STRIPS is that it can not be guided to solve the main part
of a plan first, and reserve the details for later planning. This leads to excessive
search times when developing plans because each detail of a plan is treated with
equal importance. To overcome this limitation, ABSTRIPS (5], was created to
develop plans in successive levels of detail.

- ABSTRIPS is based on the STRIPS model. To pla;x at successive levels of
detail, ABSTRIPS ranks each precondition of an operator as a function of its im-
portance in a plan. Preconditions are assigned high values if they are necessary for

the main part of a plan. Preconditions are assigned low values if they are considered

12
details. For each level of detail, or abstraction level, ABSTRIPS uses Means-End
Analysis to create plans by using only those preconditions of operators whose value
is greater than that level. By creating high level plans and successively refining them
at lower levels, an overall plan is developed in significantly less time than STRIPS
would require.

Sarcedoti states

“A good heuristic evaluation function will enable a problem solver to

reject most of the possible paths in a situation space”.

The heuristic evaluation function he chose was to rank the preconditions to elim-
inate search tree branching at each abstraction level; however, another evaluation
function is also required. As one can see, ABSTRIPS suffers from the same malady
as STRIPS if used to plan in our target world. The elimination of preconditions
for .abstract planning does nothing to reduce the number of possible robotic ac-
tion alternatives that our target world provides at each planning step and in each
abstraction space.

NOAH [6] moved away from the predicate calculus, Means-End analysis plan-
ning style and introduced “procedural nets” to produce plans with nonlinear con-
straints. such as operations that have to be time ordered for successful execution.
Each procedural net contains an action at some level of detail, along with “fork” and
“join” nodes for combining actions that can be executed in parallel. As the net is
expanded level by level, a set of knowledge-based critics examine the actions at the
current level and dictate those that must be ordered, and those that can execute in
parallel. When the bottom level of the net is reached, the action nodes correspond
to actions that must be performed by agents in the given world.

When creating robotic actions, NOAH will avoid binding an ACTOR or OBJ

variable to an agent symbol until it is absolutely necessary. This least-commitment

13

approach adds a degree of flexibility to planning, since it allows uninstantiated vari-
ables to be set by other system constraints, such as resource availability. Sarcedoti
suggests emploving 2 “Use Existing Objects™ critic, which conserves resources by
binding variables to agent symbols that have already been used in planning.

For a reasonably complex environment, such as our target world, many of
the variables will be left uninstantiated at the final level of the plan, since many
robotic actions can achieve the desired effects needed by the plan. The “Use Existing
Objects” critic will not be able to bind all the uninstantiated variables, so another
critic, in the form of an evaluation function, is needed to select the ACTORs,
ACTIONSs, and OBJs that should be used.

Other planning systems followed that use some of the ideas presented in
NOAH. MOLGEN [7, 8] combines hierarchical planning and a least-commitment
approach with variable constraint passing. As planning steps are developed, MOL-
GEN develops a constraint list that limits the agents that can be used to instantiate
variables in planning steps. The constraints aid the planning system by reducing
the size of the search space for each pianning step. NONLIN [9] adds backtracking
to NOAH to reduce the possiblity that a suitable plan is not found.

The SIPE [10] planner is also based on the NOAH system, but is one of the
first planners to integrate feedback into planning. If a failure occurs during the
execution ~f 1 generated plan, a SIPE module examines the state of the world after
the failure and replans the task from the current state. SIPE also adds MOLGEN-
like constraints and backtracking to the NOAH system.

Recently, Rokey [11] developed a two-level planner for the JPL telerobot
testbed. The planner, TIPS, draws strongly from NOAH and SIPE, and is de-
signed to operate in a multiagent, redundant world. Stage 1 of the planner employs
procedural nets to develop a set of largely uninstantiated actions that achieve a

given goal. Stage 2 of the planning system binds ACTOR and OBJ symbols to

14

uninstantiated variables using opportunistic scheduling heuristics. In this stage, the
agents are viewed as resources, and availahle resources can be assigned to a given
action, much in the same way a computer operating system allocates resources to
running processes. Resources that are not available form the set of constraints for
each planning step. Stage 2 allows the planner to recover from unexpected failures
by reallocating resources on-line, if necessary.

In effect, the scheduling heuristics form an evaluation function that ranks
possible robotic actions, and assigns higher values to those that represent under
utilized agents. It is quite possible for many possible robotic actions to achieve high
rankings after evaluation, if their agents are available for use. This is particularly
true in a highly redundant setting, such as our target world. The addition of a
second evaluation function can be used to reduce the number of candidate robotic
actions that achieve the desired effect that has been provided by Stage 1 of the plan.

Saridis et al. [1, 12, 13, 14, 15, 16] have developed the concept of an “Intelli-
gent Machine” that combines elements from the disciplines of Artificial Intelligence,
Operations Research and Systems Theorv. The Organization level of the Intelligent
Machine, as discussed in (17, 18], is responsible for high level planning activities.
The function of the Organization level is to form activity strings from primitive
events and order the activity strings to form plans. Under this theory, the primitive
events represent abstracted actors, actions and objects in the world.

The theory of Intelligent Machines emphasizes a mathematical approach to
planning by selecting activity strings that minimize a system cost function. This
cost function is the Entropy of the activity, and represents the uncertainty of the
activity. In other words, the Entropy function forms the evaluation function that
eliminates candidate robotic actions that are highly uncertain.

Valavanis [17] proposed one algorithm for selecting primitive events for activ-

ities based on their Entropyv values. Unfortunately, the suggested algorithm can be

15

computationally expensive, especially for large numbers of possible activities. This
places a second requirement on possible evaluation functions: If a large number of
candidate robotic actions exist for a given planning step, the evaluation function
must ef ficiently determine a subset of candidates that are optimal with respect to

the evaluation function.

2.3 Evaluation Functions for Robotic Planning Systems

At each step in a plan, a robotic action is used to change the state of the
world. In a complex world, many robotic actions may lead to the same effect. For
a given effect, an evaluation function can be applied to the set of applicable robotic
actions to determine which candidates from the set are “optimal” in some sense.
The non-optimal candidates can then be eliminated and only the optimal robotic
action(s) will be used as a planning step.

Many different optimality criteria can be applied to robotic actions. Some of

these are:
e Uncertainty in achieving the desired effect.
e Complexity in achieving the desired effect.
e Time to complete desired effect.

Each criteria can rank the set of robotic actions to determine an optimal one for the
given desired effect. The evaluation function that we consider in this work is the
uncertainty of a robotic action in achieving a desired effect.

Consider a world with many actors, objects, and different actions that can be
peri:ormed by the actors on the objects. To achieve a desired effect, an actor, action
and a set of objects must be selected to form the robotic action. From the structure

of the robotic action, many agents and actions may be possible.

16

It is likely, for example, that certain actors work better than others at achieving
a particular effect. It may also be the case that certain tools cannot be reliably used
to achieve a particular effect, while other similar tools can. In some situations, an
actor and object may not work well together in achieving an effect. All of these
factors contribute to the uncertainty that a robotic action successfully achieves a
desired effect.

It would be extremely useful if, given a desired effect, the evaluation function
could examine the set of symbols contained in a candidate robotic action and pro-
duce a value representing the probability that the robotic action causes the desired
effect. This probability will be referred to as the probability of ef fect (POE) for
a robotic action and a desired effect. The POE value could be developed through
experimentation in the environment and stored in a database. It would be even
more useful if a desired effect could be provided as input to a system that contains
the evaluation function, and have the system produce, as output, the single robotic
action which has the highest probability of achieving the desired effect, out of all
the candidate robotic actions. Perhaps this system could be extended to produce a
set of high POE robotic actions. Robotic actions that have low POE values could
then be eliminated from the candidate list.

A major difficulty in developing such a robotic action evaluation function is
that the function must “e able to produce POE values for all robotic actions given
a desired effect. Since the number of possible robotic actions can be extremely
large, it is unreasonable to believe that all possible actions could be tested and their
POE values stored. Instead, given a limited number of robotic action/desired effect
pa.ifings and their corresponding POE values (developed through experimentation
in the world), the evaluation function must be able to infer POE values for untested
robotic action/desired effect pairings. Thus, given a training set of robotic actions,

effects and their corresponding POE values, the function must be able to recognize

17

relationships between symbols in the training set and exploit these relationships to
infer POE values for untested situations.
This thesis describes the development of the Associative Rule

Memory (ARM), a system that possesses the following capabilities.
1. The storage of provided robotic action/desired effect pairings with POE values.

2. The ability to extract relationships between symbols which affect POE values
and use these relationships to provide predictive POE values for untested

robotic action/desired effect pairings.

3. The ability to provide as output, a set of robotic actions that have a high

probability of achieving a desired effect, given the desired effect as input.

Figure 2.1 presents a block diagram of the system. The individual blocks are

defined as
e a database of robotic actions, effects and corresponding POE values,

¢ the ARM model, responsible for storing the database of robotic actions and
effects and predicting POE values for untested robotic action/desired effect

pairings,

e an input/output interface that receives a desired effect from a user or auto-
matic planning system as input, and responds with a set of high POE robotic

actions as output,

e a recall procedure used to search the ARM to find a set of high POE robotic
~ actions, given a desired effect.
There are several ways that the ARM can be used to aid in planning. As

discussed above, the ARM can be used to rank alternative robotic actions for

a given effect to reduce the size of the planning search space. An automatic

18

planner can then build a set of tasks that achieve a goal using the POE value
as a cost metric to determine an optimal planning path to pursue. This is

similar to the use of an A" search algorithm for planning.

The ARM can also interact with a user who is familiar with the target en-
vironment to develop a plan manually. The ARM can be used to provide
alternative robotic actions to the user, or can provide the user with relation-
ships between agents in the world that have been extracted from the database
of robotic actions and effects. Using these relationships, the user can deter-
mine combinations of agents that work well together, and those that should

be avoided.

19

ORGANIZATION OF MODEL
Representation
of Robodc
Acdons
Stucture of PCE
Model Valges
3
Desired Effect
Model of
POE vaiues
" for Robodc
Acticns
S (ARM)
[
Set of High
POE Robotc Actions
Qurpur
Associanve Recall of Actons
(Minimize E(n))

Figure 2.1: ARM system block diagram

2.4 Symbolic Structure and the ARM

The planning system can involve user interaction, or it can be an automatic
planner like those previously discussed. The ARM must be able to function within
such a planning system in order to be useful. This need places several structural
requirements and limitations on the ARM.

Each of the previously cited planning systems represents the robotic action
and effect operator as a grammar. For STRIPS and ABSTRIPS, this grammar is
first-order predicate calculus. For NOAH and TIPS, a grammar is developed under
the auspices of procedural nets, whose actions appears similar to the grammars used
by expert systems such as OPS3 [19]. Both of these grammars contain variables that
must be bound to symbols representing agents and actions in the real world. The
grammar of the Organization level of the Intelligent Machine is an ordered list of
primitive events that obey a set of compatibility constraints.

We will define a grammar for the ARM that is sufficiently general to encompass
all the representations. The purpose of a grammar for the ARM is to define an
expected set ~f mouts and outputs, and to limit the set of symbols that can be used
together. The ARM grammar consists of two parts, general rules and speci fic
rules. General rules contain variables for actor, action and object symbols and
provide guidelines for allowable combinations. Specific rules are instantiations of
gene~al rules with symbols from the world model. Before the actual structure of the

rules is presented. however, it is first necessary to discuss agent classes.

2.4.1 Agent classes

A robotic action generally consists of an actor, an action, and an object the
action is performed on, often called the direct object. The robotic action may also

consist of a set of indirect objects. Consider the following robotic action

FTS ATTACH ORU PALLET - H

achieving the effect
ORU 1S - ATTACHED -TO PALLET - H (2.1)

Here, the actor is rgpresent.ed by the symbol FTS, the action is represented by
ATT ACH, the direct object is ORU, and the indirect object is PALLET1. This
action represents the Flight Telerobotic Servicer (FTS) attaching (ATTACH) the
Orbital Replacement Unit (ORU) to the heavy Pallet (PALLET-H). It is likely that
only dextrous manipulators can attach objects to other objects, so other types of
actors, such as a Mobile Transporter, should not be used with the ATT AC H action.

A robotic action may also require a tool to accomplish its task. For example,
EVA ACTUATE ORU TOOLSET1

with effect:
ORU IS - ACTUATED (2.2)

specifies that Toolset 1 must be used by the Extravehicular Astronaut (EVA) to
actuate the Orbital Replacement Unit. Again, it is unlikely that a non-dextrous
manipulator can successfully actuate an object. It is also unlikely that actuation
can take place with an indirect object other than a tool.

We define an agent class to be a set of agents that possess similar characteris-
tics with respect to the actions they can perform, or actions that can be performed
with them. Following directly, a symbol class is the symbolic representation of an
agent class. The name of a symbol class will be denote by < - >. It is important to
note that agents may belong to several agent classes. Therefore, the same symbol
may exist in several symbol classes.

“ In the above examples, both FTS and EV A belong to the symbol class
< dez >, the set of symbols for dextrous manipulators. Similarly, the symbol

TOOLI1 belongs to the symbol class < tool >, the set of tool symbols. A full list of

symbol classes used in this work along with the symbols that belong to each class,

is presented in Appendix B.

2.4.2 General Rules

Symbol classes are used to limit the scope of a robotic action, by reducing
the number of possible instantiations. This is demonstrated by the structure of the

general rules.

General rules are formed by the grammar
ACTORC ACTION RECOBJC —

OBJC STATE OBJC (2.3)

where

e ACTORC is a variable representing a symbol class containing actor symbols.

ACTION is a symbol denoting an action.

RECOBJC ¢ {OBJC | OBJC RECOBJC}

e — separates the robotic action (ACTORC ACTION RECOBJC) from the
effect (OBJC STATE OBJC) and means “produces the effect”.

e OBJC is a variable representing a symbol class containing object symbols.
e STATE is a symbol denoting a state of an effect.

From the above description, the robotic action part of the rule can contain a number
of object classes. It is important to note that NULL is a symbol class, and is used
as a placeholder when no agent or object is needed. '

An example of a general rule is

<dex > ATTACH <obj > <obj > —

-

<obj> IS—-ATTACHED —-TO <obj>

another example is
<dez > ACTUATE <obj> <tool> —

<obj > IS—-ACTUATED NULL

The general rules are used to dictate allowable combinations of symbols that
the ARM should expect. They are similar to the non-instantiated rules that are
present in the planning systems discussed above, and the compatability constraints
of the Organization level. If a symbol combination violates a general rule, it is illegal.
The ARM should be able to identify illegal symbol combinations, and prevent them

from being used in planning.

2.4.3 Specific Rules

Specific rules are instantiations oi general rules with agent symbols. The form

of a specific rule is

ACTOR ACTION RECOBJ —

OBJ STATE OBJ (2.4)

where
o ACTOR is a symbol of a symbol class representing actors.

e ACTION is a symbol denoting an action.

RECOBJ ¢ {OBJ | OBJ RECOBJ}.

— has the same meaning as in general rules.

e OBJ is a symbol of a symbol class representing objects, or is NULL.

STATE is a symbol denoting a state of an effect.

Examples of specific rules are
FTS ATTACH ORU PALLET1 —

ORU IS - ATTACHED -TO PALLET1

and:

SPDM ACTUATE ORU TOOL1 —
ORU 1S — ACTUATED NULL

For brevity, the NULL symbol is sometimes omitted from the specific rule if
it is known to exist in general rule to which the specific rule corresponds. For the
Organization level of the Intelligent Machine, a specific rule represents an ordered

string of primitive events which is an activity string.

2.4.4 Limitations of this representation

The chosen representation has several inherent limitations. These are:

1. It provides a very high level description of agents and actions and does not

consider many details.

2. The symbols are discrete and cannot represent continuous states of agents

(such as SPDM IS — AT X =123.445 Y = 50.0).

3. The POE value summarizes only the success or failure of a robotic action at

achieving a desired effect.

4. The effect of a rule is limited to possessing three symbols:
(OBJ STATE OBJ).

Problems that need added detail or continuous states are outside the realm of this
work. Since the POE value summarizes only success or failure of a robotic action, it

does not detail how well the action was performed. For example, it cannot represent

pote)

a robotic action that “almost succeeds” or “nearly fails”. The effect portion of
the representation is small to facilitate planning from desired effects. If the effect
portion were large, the system might become overwhelmed at planning possiblities
using techniques like Means-End Analysis.

Further, we impose the following assumptions and constraints on our system.

1. All difficulties encountered in successfully completing a robotic task are due
to interrelationships between agents and actions explicitly used to complete

the task.

2. The direct object symbol in the effect of a specific rule is the same as the

direct object symbol in the robotic action.

3. If the indirect object symbol in the effect of a specific rule is non-NULL, then

it is the same as the first indirect object symbol in the robotic action.
4. Unexpected effects of robotic actions are not modeled by the ARM.

The first assumption states that any decrease in the POE value of a specific rule
is due to interactions between symbols explicitly stated in the rule. This indicates
that environmental influences of other agents not stated in the specific rule have no
effect on the POE value. This is a strong assumption, but necessary if modeling
of agent and action interrelationships is to take place. If this assumption was not
made, unmodeled relationships could effect POE values and the ARM would not be
an effective and reliable predictor.

The second and third assumptions dictate constraints on instantiations of the
general rules. These assumptions are made to reduce the complexity of the ARM
model. These assumptions also reduce the number of pos;sible instantiations of a
robotic action given the desired effect. We will show, however, that for many cases,

the number of possible instantiations can be very large.

The fourth constraint states that only robotic actions and effect pairings that
are instantiations of general rules will be considered in our system. This eliminates
error states f-om planning and is consistent with modeling only success and failure

of a robotic action by the POE value.

2.5 The ARM as a Model

The ARM is responsible for assigning POE values to robotic action/desired
effect pairings. In the preceding sections, we have formalized these pairings, and
named them specific rules. Also, it has been determined that the ARM should
produce a set of high POE robotic actions as output when provided with a desired
effect as input. Therefore, given a set of general rules, it is the responsibility of the

ARM to

e assign a POE value to a specific rule that is the instantiation of a general rule,
* reject any symbol combination that is not the instantiation of a general rule,

e receive as input the effect of a specific rule, and produce as output a set
of robotic actions that have a high probability of achieving the effect. It is
important that the POE value for each robotic action in the set be produced

as well.

As detailed above, it is not likely that the POE value for each specific rule
will be available for storage. Instead, the ARM must be able to infer POE values
for untested specific rules by modeling the relationships between agents and actions,
and the effect these relationships have on POE values. When the ARM is presented
with an untested specific rule, it can use these relationships-to predict a POE value

for the rule. In more general terms, the ARM must be able to model the probabilistic

relationships between symbols of a known grammar.

2.5.1 Training the model

Training the ARM model develops the relationships between symbols used to
predict POE values. One training technique is to have the user explicitly encode the
known relationships between agents, actions and effects and store these relationships
in the ARM model. This method would require a sophisticated knowledge-based
system and forces the burden of relationship extraction onto the user, who must
examine all tests performed in the robotic environment to create a predictive model.

A more desirable technique is to present the ARM with a set of tests that have
been performed in the robotic environment, and have the ARM implicitly extract
the relationships between symbols. The set of tests, called the training set, can be
presented to the ARM in the form of specific rules. Each specific rule in the training
set must possess a POE value that indicates the probability that the robotic action
of the specific rule achieves the desired effect. It is the responsibility of the ARM
to extract relationships between symbols in a specific rule and determine how the
relationships effect the POE value for the rule. These predictive values can then be
applied to untested specific rules that share some of the same relationships.

Using this technique, a training set is a collection of specific rules that have
been tested in the robotic environment, along with corresponding POE values that
dictate the probability that the robotic action of each specific rule achieved the
desired effect of the specific rule. Together, the training set of tested specific rules
and the set of general rules form a database that is provided to the ARM. This
database allows the ARM to develop predictive abilities and eliminate illegal symbol
combinations. The database block relative to the overall system is presented in

Figure 2.2.

-

ORGANIZATION OF MODEL

Representation
of Robodc Gm.l Rules Sp::zﬁ: Rules
Actons
Stucture of PCE
Modei Values
Ioput
) 4
Desired Effect
$
4
Set of High
POE Robotic Actions
Quput
Associanve Recall of Actons
(Minimize E(n))

Model of
POE valves
for Robodc
Actons
(ARM)

Figure 2.2: ARM system block diagram with rule database

29

2.5.2 The ARM as a neural network

One class of models that is particularly adept at developing implicit relation-
ships between symbols in a training set is the artificial neural network (ANN). Each
individual ANN model, however, has its strengths and weaknesses and these must
be evaluated to arrive at a suitable representation. Excellent discussions comparing
different ANN models are presented in [20, 21, 22, 23, 24]. The four models we
shall consider are Backpropagation networks, Grossberg ART networks, Hopfield

Networks, and Boltzmann Machines.

2.5.2.1 Backpropagation networks

Backpropagation networks [25] are comprised of sequential layers of simple
processing units that are arranged so that the output of one layer feeds into the
input of the next layer. Typically, these networks are used to learn arbitrary map-
pings from an input da:a set to a target data set. The underlying function of the
processing units and connection weights in a backpropagation network is to build
classification regions in the input space by creating hyperplane discriminant bound-
aries. In theory, a two level network can separate data into convex classification
regions while a three level network can develop arbitrarily complex regions {22].
The weights are trained using a backpropagation procedure originally developed
by Werbos [26]. Recently, Williams [27] developed a new procedure for training
backpropagation networks using reinforcement learning.

When an input is provided, the trained network determines the boundaries
within which the input falls, and produces a output corresponding to that region.
Inputs that fall between the taught regions produce an output that is a blend of the
output of nearby classes. In this way, the output of the backpropagation network
can be somewhat continuous for nearby input values.

Applications range from classification of input data [28, 29, 30], to modeling

vy

of transfer functions for unknown plants [31, 32, 33], to topological transformations
[34]. Miyamoto et al. [35, 36] use backpropagation networks to learn coefficients of
the nonlinear inverse dynamics equations for a six degree of freedom manipulator.
Goldberg and Pearlmutter [37] supply a backpropagation network with window of
trajectory data to leé.rn the inverse dynamics of a two degree of freedom direct drive
arm.

Day proposes a method for building an architecture in which connectionist and
standard symbolic Al implementation techniques complement each other (38]. The
system allows a connectionist network to observe the internal workings of a symbolic
Al program and thereby learn to carry out the same problem solving behavior. Day
proposes the use of a Backpropagation network to learn the Al rules. As he states,
a major problem with this proposal is how to achieve the desired linkage between
the two systems, so the network can observe the behavior of the rules. He does
recommend the network learning be achieved by watching pre- and post-effects of
the expert system chaining, where the pre-effects are the input and post-effects are
the desired output of the network. In this paper, Day develops a rough architecture

for this theory.

2.5.2.2 ART networks

The ART architecture, developed by Grossberg (39, 40, 21] is a biologically
motivated dynamic network that is adept at online learning of pattern classifica-
tions and pattern completion. The model. as presented in Figure 2.3 contains a top
down classification memory (F2) and a bottom up pattern memory (F1) as part
of its attentional subsystem. Together, the two memories “resonate” as described
by nonlinear gated differential equations. In steady state, memory F1 will contain
a correct and complete input pattern and F2 will contain the classification of the

input pattern. The weighted connections between F1 and F2 can be modified online

31

Oul ATTENTIONAL
n SUBSYSTEM
Control
: Dipole Field
ST™ R
ST™M
L™ RESET
LT™ ¢
ST™M
Gain F1
Control
INPUT

Figure 2.3: ART architecture

to assign classifications to input patterns. Some applications of this system are:
modeling the timing circuit of the brain for temporal discrimination during associa-
tive learning of rewards and punishment [41]; modeling the effects of frontal lobe
damage on the classification of objects by their features [42]; and alphabet learning

[43).

2.5.2.3 Hopfield Networks

Hopfield networks [44, 45] are most applicable to associative memory or op-
timization tasks. The dynamics of the Hopfield network operate to minimize the
Energy of the network, which is a function of the weights and the nodes of the

network. The Energy is given by

[3]
(91}
—

E(N) = %Z Zw;jn,-nj (.

-~

where the state of node i is denoted n;, n; ¢ {-1,1}, w;; ¢ R is a real valued

weight connecting nodes : and j and N = (ny,ns,---,n), the state of a k£ node

network. The network uses a gradient descent technique to alter the state of the
nodes in order to find a local minimum Energy state, which is the associative recall,
or optimal value of the network.

Associative recall capabilities are discussed in [44, 45] The development of
stable memories, which are called terminal attractors, is discussed by Zak [46] and
Hirsch [47]. It is shown in both [48] and [49] that the number of stable memories
that can be stored in a Hopfield network of n nodes is 0.15n.

For optimization, Hopfield and Tank have applied these networks to the Trav-
eling Salesman Problem [50], where city distances and other constraints are formu-
lated into an Energy equation, from which network weights are assigned. Using the
optimization model, Touretzky [51] has developed the DUCS architecture that pro-
vides multi-level distributed representations for frame-like concept structures. The
goal of this research is to develop a powerful short term memory that can construct
and manipulate concepts rapidly. Given some slot name/slot filler values as cues,
DUCS can retrieve entire frames from concept memory. DUCS can also complete

frames that have empty slot values.

9o

For example, given the frame

AGENT: JOHN
VERB: THROW
OBJECT: T
DESTINATION: FOX
LOCATION: HOUSE

DUCS would retrieve the correct frame with z = ROCK.

All concepts are stored a priori by the user by fixing the connection weights.
Once these weights are assigned they are fixed and the network cannot learn new
concepts. This method suffers due to memory storage limitations in the Hopfield
network and because it sometimes recalls incorrect frames, a residual effect of the
underlying optimization technique. Hinton [52] has developed similar methods for
learning concepts.

Dolan and Dyer [53] presented the CRAM system which also performs role
binding in knowledge frames. The procedural memory is composed of many winner-
take all cliques. Although they propose frame learning, they do not present a tech-

nique for implementing it.

2.5.2.4 Boltzmann Machines

The Boltzmann Machine [54, 53, 56] is similar to the Hopfield network in its
use of an Energy function to associate an input pattern with an output pattern.

The Boltzmann Machine Energy function is given by

1
E(N) =3 Z Z w;;nn; + Z Ojn,- (2.6)
R i

(Ve

where 8; ¢ R is a bias term on a node being active, and w;; ¢ ®. Depending on
implementation, n; ¢ {—1,1} or n; € {0,1}.

The Boltzmann Machine derives its name from the relationship it maintains
between the Energy of the network state, and the probability the network settles in
that state through Simulated Annealing, which is given by a Boltzmann distribution.
Briefly put, the probability of a network state is inversely related to the Energy of
that state. Simulated Annealing [57] is used as a descent technique to find the set
of asserted nodes that minimizes the Energy (maximizes probability). These nodes
correspond to the correct output of the network for the provided input.

Unlike Hopfield networks. Boltzmann machines also contain “hidden” nodes
that are used to represent higher order relationships between input and output
nodes. The purpose of these hidden nodes is similar to the middle layer nodes
in a backpropagation network. Also, like backpropagation networks, Boltzmann
machines can be trained on test data to associate input and output values.

Boltzmann Machines have been used for figure-ground separation in computer
vision [58], combinatorial optimization [39], problems and knowledge frame recall
[60]. Pearl [61, 62] has shown equivalence between belief networks and Boltzmann
Machines. However, nodes in belief networks must represent propositions, and do
not represent individual variables [63].

Touretzky and Hinton [64] use a distributed Boltzmann Machine architecture
to represent two types of production systems. The first system contains rules that
consist of pairs of working memory triples for the rule condition, and an arbitrary
set of triples that must be added to or deleted from working memory as the rule

effect. Typical rules are of the form
- Rule-l: (FAA)(FBB)= +(GAB)-(FAA)-(FBB)

The second production system is similar, but allows variable matching in the con-

dition part of a rule. For example,

SO

Rule-2: (t AB)(zCD)=+(PDQ)-(RST)

where z is a variable to be matched by working memory elements.

The weights of the network are fixed by the user. These weights are used to
represent the rules and working memory elements. Good results are obtained with
a working memory alphabet size of 25 symbols, a set of about six rules, and six

elements in working memory at a time.

2.5.3 Choice of an ANN model for the ARM

Based on the various ANN models presented above, the Boltzmann Machine
seems to come closest to the capabilities required by the ARM. The Boltzmann
Machine allows for higher order relationships between input and output pairs, which
is necessary for the modeling of robotic actions and effects. Using a Boltzmann
Machine, it should be possible to associate effects of specific rules (input) with their
actions (output). Also, it should be possible to store the POE of a specific rule as
a function of the Energy of the network when the specific rule is asserted on the
network nodes. Searching the network for a minimum Energy state using Simulated
Annealing, or another optimization technique can be used to produce the robotic
action that has the highest probability of achieving a given desired effect. Finally,

if a suitable architecture is chosen, the general rules could also be stored.

2.6 Recall of Robotic Actions

The ARM must be able to recall a high POE robotic action given a desired
effect as input. Recall requires performing a search on the ARM model. Chapter
4 will discuss how the search of the ARM model involves the minimization of a
higl;Iy nonlinear, discrete function. This precludes the use of linear optimization
techniques such as gradient descent, conjugate gradient, linear programming, and

others [63].

Three techniques that are useful for optimizing nonlinear, discrete functions
are Random Search, Simulated Annealing, and the Genetic Algorithm. Each will
be quickly reviewed here, with a more detailed presentation given in Chapter 4.

Random Search [66, 67] selects random members from the space of candidate
solutions, updating the current best choice whenever 2 member is found that is
better than all previous members. This technique has been shown to converge in
probability to the optimum of a given cost function over a solution space. Random
Search can be quite slow, however, since it does not exploit inherent knowledge of
the structure of the solution space.

Simulated Annealing [57] is similar to gradient descent, though it allows oc-
casional uphill steps in the cost function. The uphill steps allow the search to
avoid entrapment in local extrema. Simulated Annealing has been widely used with
Boltzmann Machines [55, 58, 59] due to the nature of the machine’s cost function.
Recently, Simulated Annealing has been parallelized to reduce search time. Exam-
ples of parallel Simulated Annealing are presented in [59, 68].

Simulated Annealing can proceed quite slowly if convergence to the cost opti-
mum is required [69]. No convergence proof has been given for parallel Simulated
Annealing. Also, like Random Search, Simulated Annealing does not possess or
develop any knowledge of the underlying structure of the cost function that is being
optimized.

The Genetic Algorithm (GA) [70] is a third optimization technique suitable to
highly nonlinear, discrete search spaces. Unlike Random Search and Simulated An-
nealing, the GA maintains a population of search points. In most GA applications,
the search point is represented by a binary string. Using a genetic analogy, new
search points are created through the selection and combination of current popula-
tion members. The GA has been shown to promote high performing, short-order

substrings, called “schema.” The schema develop an implicit representation of the

problem space while searching for the optimum value. An excellent discussion and
review of Genetic Algorithms is presented in [71].

Genetic algorithms have been used in many optimization tasks. Original work
on function optimization was done by DeJong [72]. Davis has used the GA for both
job shop scheduling .problems [73] as well as graph coloring problems [74]. Glover
[75] uses the GA to optimize the configuration of a computer keyboard.

A large amount of research has been done to make the GA more efficient.
Baker [76] discusses population sampling techniques and develops one that is shown
to have no bias and minimum spread. Grefenstette and Baker [77] examine the
effect of fitness assignment on sampling rate in view of implicit parallelism and are
able to generalize the Schema Theorem [70] to other fitness assignment functions.
Goldberg [78] examines optimal sizing of GA populations for parallel and serial
populations. In this work, Goldberg develops a figure of merit that describes the
amount of useful schema processing in a GA. Eshelman et al. [79] examine positional
and distributional biases for different crossover techniques. Many researchers have
experimented with parallel GAs 80, 81, 82, 83, 84, 85].

The strength of the GA is that it develops an implicit understanding of the
underlying structure of a given cost function through the propagation of short-order
schema. By using semantic encodings of symbols into short binary strings, it is
possible to accelerate the search procedure for a given problem [86]. Unfortunately,
the GA often prematurely converges to a local extremea of a cost function. This

will be further discussed in Chapter 4.

2.7 Conclusions

~ This chapter detailed the target world for our system, which is composed of
many robotic agents and actions. It was stated that in our target world, many

robotic actions can achieve the same effect. As shown by the review of automatic

38

planning systems, this redundancy leads to difficulty in planning, due to the size of
the search space of possible actions.

To reduce the search space, an evaluation function called the Associative Rule
Memory is proposed, that stores and predicts the probability that a robotic action
achieves a desired eﬁ'ect. A grammar is provided to interface the ARM with inter-
active users or automatic planning systems, and an implicit traixﬁng methodology
is recommended.

Different artificial neural network models have been as a possible basis for
the ARM. The Boltzmann Machine was determined to satisfy most of our needs,
but it must be specialized to fit the ARM. To allow the ARM to produce a high
POE robotic action, given a desired effect. optimization techniques were examined.
The common characteristic of these techniques was the ability to optimize a highly

nonlinear, discrete function.

CHAPTER 3
DESIGN OF THE ASSOCIATIVE RULE MEMORY

The previous chapter described the structure of the specific and general rules that
are used in planning. The general rules and training set combine to form a database
of knowledge that describe robotic actions that are possible, and actions that have
been explicitly tested. Since the number of possible robotic actions may be quite
large in an environment with many agents, it is reasonable to assume that the specific
rules in this database encompass only a small percentage of possible actions. Since
the database by itself is unable to provide probability of effect values for untested
specific rules, it is only effective in planning sequences in which all required actions
are present in the tested specific rules of the training set. This forms a rather small
subset of possible plans.

It would be extremely useful if a mechanism or model existed to examine the
tested specific rules and the general rules and use the probability of effect values
lo infer the agents thai perform well together, and agents that do not. Such a
mechanism could be used to determine probability of effect values for an untested
specific rule by examining the set of agents present in the rule. Agents that together
perform poorly would subtract from the POE value while other, more compatible
agents would add to the POE. If we combine these POE changes with a default
probability value (which represents the nominal probability of an untested specific
rule), the POE for a particular untested specific rule could be determined.

Given that we know POE values for specific rules in the training set, and
can somehow infer POE values for untested ones, it would greatly aid the planning
process if the model could be provided with a desired effect as input and produce as
output a set of robotic actions that have a high probability of achieving this desired

effect along with the POE values. The user or automatic planner could then use the

39

40

model interactively to construct a sequence of highly probable robotic actions that
achieve a final goal.

For example, providing the model with
PALLET - L IS—- ATTACHED -TO TRUSS
the model should respond with
FTS FIXTURE PALLET -L TRUSS POE:097

SPDM ATTACH PALLET -L TRUSS POE:0.95

if the specific rules
FTS FIXTURE PALLET -L TRUSS —

PALLET - L IS— ATTACHED-TO TRUSS POE:097

and

SPDM ATTACH PALLET -L TRUSS —
PALLET — L IS- ATTACHED-TO TRUSS POE:095

exist in the model and possess the highest POE values. It is important that the
technique used by the model be efficient in finding these sets of actions, since the
search space of possible actions may be quite large.

Given these requirements, this chapter describes the design of the Associative

Rule Memory. The function of the ARM is to:

1. Store tested specific rules and POE values.
27 Store general rules.

3. Provide predictive values for untested specific rules.

4. Given a desired effect as input, produce as output the robotic action that has
the highest POE value for the effect. or a set of robotic actions, each possessing

a high POE value for the effect.

This chapter focuses on items 1-3 in the above list, and forms the Asso-
ciative Rule Memory block in Figure 2.1. while item 4 is examined in depth in
Chapter 4. The outline of the chapter is as follows. Section 3.1 details the Boltz-
mann Machine, which is the neural network model used by the ARM. Section 3.2
maps the architecture of the ARM onto a Boltzmann Machine and examines the
issues of input/output, representation of specific and general rules, and general-
ization/prediction. Section 3.3 develops a technique for training the ARM that is
guaranteed to find the optimal set of weights for the given training set. Comparison
is made to techniques used by other researchers for training Boltzmann Machines.
Also, representation of higher order relationships between agents is discussed, along
with a retraining procedure to encompass these relationships in the ARM. Examples
and results of training using this procedure are presented in section 3.4. Séction 3.3
examines the use of the ARM for prediction of POE values for untested specific
ruies. In section 3.6, extensions to the basic ARM model are presented. Section 3.7

summarizes the model and concludes this chapter.

3.1 A Description of the Boltzmann Machine Model

Before it is possible to understand how the ARM can be modeled by a Boltz-
mann Machine, it is necessary to develop a clear understanding of the Boltzmann
Machine model. With this consideration. this section presents the fundamentals of
the “generic” Boltzmann Machine model.

’The Boltzmann Machine, as discussed in the previous chapter, is a constraint

satisfaction network that is capable of learning underlying constraints that charac-

terize a domain by simply being shown examples from the domain. The Machine,

a network of nodes and connections, builds an internal model of the domain by
modifying the connection values, or weights in accordance with the examples it is
presented.

Let the nodes of the generic Machine take values n; ¢ {0,1}. The weighted
connection between a node pair represents a weak constraint between the nodes,
given by a real-valued number w;; ¢ R. As the weight increases in value between
two nodes, the nodes tend to inhibit each other, i.e. both nodes will tend not to be
of value 1 at the same time. This relationship is mathematically given by an energy
equation, that represents the total amount of inhibition in the network for a given

configuration

1
E(N) = 52:11:;]'11{1‘1]' +Z¢9J-n,- (3.1)
J 2

i

As this equation reflects, each node also has a bias associated with it (6;)
that encourages or discourages a node from assuming the value 1. The equation
also demonstrates the idea of inhibition: as more inhibitory node pairs are asserted,
the energy value E(N) increases. In effect, the inhibitions form a set of weak
constraints between pairs of asserted nodes and the energy value dictates the amount
of constraint violation. It is important to note that the weights between nodes are
bidirectional, i.e., w;; = wj;.

The nodes of the network are divided into three sets: Input nodes, Output
nodes and Hidden nodes. After fixing the node values for the input nodes, the
function of the network is to find the state of the hidden and output nodes that
minimizes the total inhibition, or energy of the system. The output node value at
minimum energy state is the best associative recall for the given input.

“ The hidden nodes of the network are used to represent complex, higher order
relationships between input and output nodes. Hidden nodes are required for the

network to learn such functions as XOR or PARITY, which cannot be represented

43

by simple first order connections between input and output nodes.

The generic Boltzmann Machine uses Simulated Annealing as the optimiza-
tion technique for finding the minimum energy state of the Machine. The actual
Simulated Annealing algorithm is presented in the next chapter. It is sufficient to
detail here, that the probability of finding the system in any global state after an-
nealing obeys a Boltzmann distribution. In other words, after annealing, the relative

probability of two global states is given by

PN,) _ (ENp)-EN,)) (3.2)
P(Ng) —

where Ny is the state of the network given by Ny = (n%,n3, ..., nZ) for an m node
network.

Therefore, the probability that the network assumes a particular node config-

uration v during annealing is given by

P(N,) = ¢*~E(N-) T (3.3)

where a is a probability normalizing constant.

A difficult and slow training procedure is used to develop the weights of the
generic Machine. The thrust of this procedure is to equalize the probability dis-
tribution of input/output examples from the environment with the free running
distribution of the network under the annealing process. This is summarized by the
cost measure

1n EVa)
G =L P(V-)ingsrs (3.4)

where P(V,) is the probability that the visible nodes (i.e., input and output nodes)

are in state y when their states are determined by the input/output pairings and

P/(V,) is the corresponding probability when the network is free running under

44

Simulated Annealing. The weights can be changed to minimize the cost measure
along the gradient

B_G = ¢(pi; — Pi;) (3.5)

dw;;
where p;; is the average probability of two nodes both being in state 1 when the
state of the visible (input/output) units are fixed by the training set data, and p/;
is the corresponding probability when the visible nodes are allowed to be changed
by the Annealing process.

This gradient descent technique does not make any assumptions about the
use of the hidden nodes, and allows the network to develop its own internal rep-
resentation. The technique also does not restrict values of input/output pairings.
Therefore, the t;'aining technique is very genéral.

However, these»two features also make this training technique difficult and
slow. At each gradient step, the algorithm requires an annealing process to deter-
mine the probability of nodes being asserted when the network is free running. This
takes time. Also, the gradient technique on an arbitrary network may allow the
weights to settle into a local minimum representation, in which the gradient is 0
but the error is still significant. If this occurs, retraining is necessary to obtain the
global minimum.

Overall, the strength of the Boltzmann Machine for use in the ARM model
is its ability to associate iﬁput /output pairs, and maintain an energy value relating
these pairs. Using the Boltzmann distribution, it is possible to relate the energy to
a POE value. Also, the Boltzmann Machine contains hidden nodes for representing
higher order relationships. However, the weakness of the Boltzmann machine is that
the training technique provided is slow and difficult, especially for large numbers
of input/output pairings. Using the constraints of the ARM, however, it may be

possible to develop a special case of this Machine that requires a simpler training

45

technique.

3.2 Mapping the ARM onto a Boltzmann Machine

Given the description of the generic Boltzmann Machine, it is now possible to
specialize this network model to fit the design criteria for the ARM. In particular,

we must detail the following features:

1. The mapping of specific rules onto nodes such that the network can receive a

desired effect as input, and produce a set of robotic actions as output.
2. The relationship between connection weigﬁts and the POE value.
3. The topology of connection weights.
4. The mapping of general rules onto the network.

5. Higher order, hidden nodes.

3.2.1 Specific rules and network nodes

The previously described, the grammar of the specific rules is of the form
ACTOR ACTION RECOBJ —

OBJ STATE 0OBJ

To allow the network to receive a desired effect as input, there must exist a
set of nodes that can be asserted at the same time to represent each of the symbols
of the desired effect. Similarly, to produce a robotic action as output, the network
must possess sets of nodes that can represent each symbol of the “optimal” robotic
action simultaneously.

To this end, we can design a network that contains three input levels and
m + 2 output levels, where m is the number of object levels in the network. The

input levels are

46

. OBJ1

STATE

OBJ,

In a similar fashion, the output levels are

ACTOR

ACTION

[] OBJ1

OBJ;

e OBJ,

Each level (input or output) must contain sufficient nodes so that the level
can represent any of the symbols corresponding to agents of that levels class. For
example, if the world consists of four possible actors FTS, SPDM, JRMS, and
MT, there must be a sufficient number of nodes in the ACTOR level of the network
to represent each of these four symbols. The class of allowable symbols for each
object level is describea by the general rules for a particular implementation.

There are two extremes to the symbol representation issue. One extreme maps
each symbol to an individual node. This method creates a topology that is easy
to understand; i.e., the user can determine the relationships between symbols by
examining the weighted connections between their representative nodes. However,
sinc; this representation dictates one node per symbol, it can lead to large network
sizes, and can therefore be expensive, both in terms of storage and computation.

In the example above, four nodes would be required to represent the four different

actors.

The other extreme is a distributed representation, where a symbol is repre-
sented by a pattern of activity of nodes. An example of a distributed representation
is a binary encoding of symbols such that 2" symbols can be represented in n nodes.
In the example above, only 2 nodes would be required to represent the four ac-
tors. Distributed representations, therefore, are more efficient in term of storage
requirements. Distributed representations can also be more fault tolerant if they
sacrifice some representational capacity, as demonstrated by the Hopfield network
in section 2.5.2.3. If a particular connection or node fails, it may be possible to pro-
vide an approximate representation of the symbol. On the negative side, distributed
representations may lead to a network that is difficult to train and understand. By
themselves, the weighted connections between nodes do not provide much structural
information about the relationships between the symbols that the nodes represent.

The choice made for representation in the ARM is for a simple one-to-one
symbol to node mapping. Although more expensive in terms of storage, our main
concern is to extract and understand the relationships between symbols (or agents),
so that these relationships can be exploited in planning. Also, since this is a software
simulated network, we are less concerned with issues of fault tolerance.

Therefore, for each node level of the ARM, there is one node for the symbol
of each agent that belongs to the class of that node level. An example of this is
presented in Figure 3.1. The top half of the figure displays the nodes levels for the
desired effect, or input nodes. The bottom half of the figure displays the node levels
for the robotic action, or output of the network. The node labels are the symbols
for the agents of a particular world model.

_ Given this network structure, a specific rule is said to be asserted on the
network when each node in the robotic action part of the network is assigned the
value 1 if it represents a symbol in the robotic action part of the rule. Also, each

node in the effect part of the network is assigned the value 1 if it represents a symbol

Desired Effect (Impaz)

«;, O O O O O O

ORU MSC TRUSS PALLET! AWP CARRERI

sue O O O

IS_AT S_ATTACHED.TO IS_ACTUATED

onr O O O O

TOOLSET! TOOLSETZ PALLET-L PALLET-M

Robotic Action (Curpur)

 acToR C) O O O C) C)

SPDM SSRMS EVA

AcTioN C) O O C) C)

ATTACH ACTUATE FIXTURE POSITION TRANSPORT

o, O O O O O O

CRU MSC TRUSS PALLET] AWP CARRIER!

o1, O O O O

TOOLSET! TOOLSET2 PALLET-L PALLET-M

o1, C) © O O C) C)

SPOM SSRMS EVA

Figure 3.1: Diagram of nodes for a typical ARM network

43 .

49

in the effect part of the specific rule. All other nodes are assigned the value 0. For

example, the specific rule
FTS ACTUATE TRUSS TOOLSET1 JRMS —

TRUSS 1S — ACTUATED

is asserted on the network presented in Figure 3.2. The shaded nodes represent
asserted, or 1 valued nodes, and the blank nodes represent unasserted, or 0 valued

nodes.

3.2.2 Connection weights and the POE value

The connection weights form a set of weak constraints between pairs of asserted
nodes. These weak constraints are combined into an energy function (3.1), that
provides an overall indication of the amount of inhibition for a particular network
configuration. A relationship exists between the energy of a configuration and the
probability that the network assumes a particular configuration as shown by (3.2,
3.4) This relationship is given by a Boltzmann distribution. Using this information,
we can relate the probability of effect value to the connection weights.

A simple technique for storing the POE value is to make it a function of the
probability of a network configuration. In this way, the POE would be a simple func-

tion of the node configurations, and the weights of the network. A straightforward

model is
POE(N) = kP(N) = ke=—E(M) (3.7)
If we select k& such that
- k=e (3.8)

we see that

POE(N) = ¢~EMN) (3.9)

50

Desired Effect (Iopur) . Lo

o, O O ® O O O

ORU MSC TRUSS PALLET!] AWP CARRIER]

sue O O ®

IS_AT IS_ATTACHED_ TO IS_ACTUATED l

OB g O O O O
TCOLSET! TOOLSET2 PALLET-L PALLET-M

PR R B X E XA L AR ER R R N R L LY TR P Y R N L L L

Robotic Acton (Cwmput)

.AGORQOOOOO

SPDM SSRMS EVA

AcmNOOOOO

ATTACH ACTUATE FIXTURE POSITION TRANSPORT]
oar, QO O ®@ O O O
ORU TRUSS PALLET! AWP CARRIERI

OBJ ® O O O

TOOLSET! TOOLSETZ PALLET-L PALLST-M

os:sOOOO@O

SPDM SSRMS EVA

Figure 3.2: Diagram of asserted nodes for a typical ARM network

51

Therefore, the POE of a specific rule is exponentially related to the negative sum of
the weights for the asserted nodes of the rule. We assume that the bias terms §; =
0, since the POE value should only be affected by relationships between node pairs.

It is clear that as the weight between two nodes in a specific rule increases
(increased inhibition), the POE value for the specific rule decreases. Similarly,
decreasing a connection weight increases the POE value. To insure that the POE

value never exceeds 1.0, we must restrict the weights of the network such that
(VN])w,-,- _>_ 0

This forces the energy value to be positive for all configurations and bounds the

POE values by 1.0.

3.2.3 The topology of connection weights

- In the generic Boltzmann Machine. all nodes are connected to each other by
bidirectional weights. Due to the nature of the ARM, such a strongly connected
topology is not necessary. To show this, let us restate one basic assumption that is

made in section 2.4.4.

This system assumes that any and all difficulties encountered in suc-
cessfully completing a robotic task are due to interrelationships between

agents and actions explicitly used to complete the task.

This assumption dictates that if a specific rule has a POE value less than 1.0
(complete certainty), then an inhibitory relationship exists between symbols in the
robotic action, and symbols in the effect of that action. In other words, some subset
or c:)mbina.tion of ACTOR, ACTION, and OBJ; symbols in the robotic action do
not allow the effect of the action to occur with complete certainty. More directly,

the symbols of the robotic action place constraints on the symbols representing the

52

effect of the action. This assumption, therefore, provides the ARM with a topological
connection constraint.

The assumption dictates that inhibition is produced when a robotic action
has difficulty achieving its effect, therefore connections must exist between nodes in
the robotic action part of the network, and nodes in the effect part of the network.
Ignoring higher order “hidden” nodes for the moment, this indicates that connections
exist between the output and input nodes of the network.

It may be argued that in some cases, certain symbols in the robotic action
part of a specific rule perform poorly together, and there should also be inhibitory
connections between nodes in this part of the network. This argument is faulty.
In actuality, poor performance occurs when symbols in the robotic action are used
together o achieve a particular effect. Although higher order nodes may be required
to represent a combination of robotic action symbols, the interaction and inhibition
is still between robotic action nodes and the efect nodes, and not between the
robotic action nodes themselves. A more detailed discussion of higher order “hidden”
nodes is presented in section 3.3.2 of this chapter. Figure 3.3 shows a sample network
with weighted connections between robotic action nodes and effect nodes. The
connections with larger weights indicate svmbol pairs that perform poorly together,
and require increased inhibition to decrease the POE value. For example, suppose

we assert the specific rule N,

FTS ACTUATE TRUSS TOOLSET1 JRMS —

TRUSS IS — ACTUATED

on the network and compute the energy (3.1) assuming each node bias equals 0
(Vj 8; = 0) and we find that E(N,) = 0.340 that gives POE(N,) = 0.712. This
indicates that the robotic action given by the above specific rule has a 71.2 percent

chance of successfully achieving the effect of the specific rule.

o8I,

STATE

ACTOR

ACTION

OBI,

oBI,

OBJ 4

O .75 O O O

ATTACH ACTUATE FIXFPUR POSITION TRANSPORT

oo &/ o0 o

CRU MSC TRUs PALLET] AWP CARRIER]

.10 é ’ O O

TOOLSET! TOOLSET2? PALLET-L PALLET-M

OOOO@O

SPDM SSRMS

53

Figure 3.3: Diagram of nodes and connections for a typical ARM network

34

3.2.4 General rules and the ARM

As stated in the previous chapter, the purpose of the general rules is to provide
a framework for possible actions. Any specific rule that is an instantiation of a
general rule is a valid robotic action/effect pair. On the other hand, a specific rule
is invalid if it does not fit the structure of any general rule.

The general rules should accomplish the following, when included in the ARM.

1. The ARM should produce very low POE values for any asserted specific rule

that violates a general rule.

2. Given a desired effect as input, the ARM should never produce, as output,

any robotic action that violates a general rule.

In fact, these constraints are strongly related. By item 1, if a set of asserted
nodes violates a general rule, it should produce a low POE value. Since the ARM
outputs the robotic actions with the highest POE values for a given desired effect,
it should never recall one of these low POE combinations. Therefore, item 2 foilows
directly from item 1.

To determine how general rules should be mapped onto the network, we must
examine the grammar of the rules. The description of the general rule grammar (2.3)
states that each ACTTON symbol of a general rule is associated with a certain class
of ACTOR symbols and certain classes of OBJ, symbols for each object level z.
These classes represent the valid agents that can be used to perform ACTION in
the real world. Therefore, symbols belonging to classes that are not associated with
a particular ACTION symbol should be inhibited when that ACTION is asserted.

- Another feature of the rule grammar is that the STAT E symbol of a robotic
effect can be caused by one or more ACTION symbols. For example, the system

can contain two general rules

< manip> FIXUTRE <obj> <obj> —

<obj> IS-ATTACHED -TO < obj >

and

<manip> ATTACH <obj> <obj> —
<o0bj> IS-ATTACHED -TO < obj >

As shown, both rules have the same ST AT E symbol but possess different ACTION
symbols. Inhibition should be present between ACTION symbols and STATE
symbols that do not occur together in general rules.

One assumption that we make is that the user will never assert a set of input
nodes that cannot be generated from a robotic action. This is not a very binding
constraint, but puts the burden of input consistency on the user. With the burden
shifted to the user, the ARM does not need inhibition between sets of input symbol
classes and the STAT E symbols.

The symbol constraints detailed above can be mapped directly onto the ARM

network in the following manner.

1. For each ACTION symbol, create a connection with large weight (inhibitory
connection) between the ACTJION node and each ACTOR and OBJ, node
whose symbol does not belong to the class of allowable symbols for that

ACTION.

2. For each STATE symbol, create a connection with large weight between the
STATE node and each ACTION node whose symbol does not belong to the
class of allowable symbols for that STATE.

Making these connections will inhibit asserting any ACTION node that does
not .correspond to the STATE in the input nodes, and also inhibit asserting invalid

agent nodes given a valid asserted ACTION node.

For example, consider the general rule

< manipulator > ACTUATE < object> < tool > —

< object > IS — ACTUATED NULL

Let us assume this is the only general rule in the system that contains the action
ACTUATE or the state IS — ACTUATED. To map this onto the network in

Figure 3.1, we would need the following inhibitory connections:

1. Connections between ACTU ATE and all ACTOR nodes that are not of class

< manipulator >.

o

Connections between ACTU AT E and all O BJ; nodes that are not of the class

< object >.

3. Connections between ACTU AT E and all O BJ; nodes that are not of the class

< tool >.

4. Connections between ACTU AT E and all OBJ; nodes, since the rule does not

allow for more than two OBJ in the robotic action.

5. Connections between IS —~ ACTUATED and all ACTION nodes except the
ACTUATE node.

This is shown in Figure 3.4, where the solid lines represent inhibitory connections.
Another method that achieves the same result is to initially set all connections to

1, and then remove those that are allowed by general rules.

3.2.5 Higher order nodes

Higher order, or “hidden” nodes are required by the ARM to represent re-
lationships that cannot be mapped onto first order symhol nodes. For example,
if the FTS has a difficult time achieving the state /S — ATTACHED — TO,
this represents a first order relationship between the agent FT'S and the state

IS—ATTACHED —TO. This first order relationship is maintained in the network

by a weighted connection between the two corresponding nodes. Now, consider the

57

Desired Effect (Input)

«; O O O O O O

ORU MSC TRUSS PALLET] AWP CARRIERI

sue O O

OBJ g

ACTCR O

FTS
ACTION
ATTACH
OBI, <:> <:>
ORU
OBJ,

']'OOLSH'I

or; O

FTS SPDM SSRMS

Figure 3.4: Diagram of general rule inhibitions for a typical ARM network

58

case of the FT'S having a hard time achieving the state IS — ATTACHED - TO
when trying to attach to PALLET — L. This presents a higher order relationship
where FTS + PALLET - L together inhibit /S — ATTACHED —TO. A second
order node is required to represent the combination FTS + PALLET ~ L and a
weighted connection is made from this node to the /S — ATTACHED — TO node.
It is possible to have third, fourth, - -, nth order nodes if necessary.

The generic Boltzmann Machine allows the provided hidden nodes to develop
the required higher order relationships through its training procedure. Through this
training, the hidden nodes can implicitly assume representations needed by the net-
work to accurately represent the training set. Only a small number of hidden nodes
are generally needed to develop the representation using this technique; however,
the savings in storage is paid for by a very difficult and slow training that is not
guaranteed to find a correct representation for the training set [53].

- To insure accurate representation of the POE values for specific rules, and to
simplify the training technique, the ARM uses higher order nodes that explicitly rep-
resent the combination of symbols. Symbol nodes, such as FTS + PALLET ~ L,
will be added to the network by the training procedure when higher order relation-
ships are detected. This procedure will be described later in the chapter. When
computing POE values ior specific rules, a higher order node in the ARM network
is automatically asserted when the symbols it represents are asserted on the first
order nodes. An example of higher order nodes is presented in Figure 3.5

It is important to note that the higher order nodes will only be required for
symbols in the robotic action part of the specific rule. This is because it is the
combination of agents in the robotic action that may have difficulty in achieving
a stated effect. This method will, however, require more higher order nodes than

needed by the original training technique.

Desired Effect (Input)

m, O O O O O O

ORU MSC TRUSS PALLET] AWP CARRIER!

sue O O O

IS_AT IS ATTACHED_TO IS_ACTUATED

081 § O O O O

TOOLSET1 TOOLSET2 PALLET-L PALLET-M

Robotic Acion (Curpur)

. ACTOR O O O O O O

~ SPDM SSRMS EVA

AcTION () o O C) C)

ATTACH ACTUATE FIXTURE POSITION TRANSPORT

w, O CD O O O O

ORU TRUSS PALLET] AWP CARRIER!

omz'OOOO

TOOLSET1 TOOLSETZ PALLET-L PALLET-M

ot C) O O O C) C)

SPDM SSRMS EVA

|’ ‘) l’-s) l’ ‘) l' \1 l)
FIS ATTACH AWP FTS AWP SPDM
ORU TRUSS TOOLSETI AWP PALLET-L FIXTURE

Figure 3.5: Diagram of higher order nodes for a typical ARM network

59

60

3.3 Training the ARM

The previous section gave a general sense of how weights in the network should
be allocated to store the POE value. Agents that do not work well in achieving an
effect should correspond to nodes that have high weight values between them. The
high weight values increase the energy value for the configuration, which in turn
decreases the POE value of the configuration. An algorithm must be developed to
formalize this concept. In other words, given an initial training set of tested specific
rules, the network must adopt weight values to reflect the performance of the agents
at their task, and correctly represent their known POE values.

Training the network can be a difficult procedure. The training technique used

must overcome the foilowing problems.

1. The POE of each tested rule must be stored with a defined degree of accuracy.

2. Since tested specific rules often contain overlapping subsets of symbols, the
rules also share the same connections in the ARM network. Altering one
connection weight to more accurately represent the POE of a particular tested
specific rule may lead to less accurate representations for other specific rules
in the training set. The training technique must possess a2 method for altering

weights that can overcome this difficulty.

3. From any initial state of the network. given a particular training set, the train-
ing algorithm must always converge to the same set of weights. This require-
ment stipulates that the relationships between symbols for a given training
set always map to the same weight representation. Thus, the requirement

~ prevents multiple solutions from occurring.

4. Higher order relationships between symbols must be discovered, corresponding
nodes must be added, and weights must be correctly trained. If unnecessary

higher order nodes are created, they must be pruned.

61

Since the ARM is a Boltzmaan Machine specialized in both connection topol-
ogy and higher order node structure, it is possible to develop a training technique
that is not as complicated as the original method designed for the generic Boltzmann
Machines. The technique chosen is to minimize the sum-squared distance between
the energy of the ARM when a tested specific rule is asserted on the nodes and the
energy value of the tested specific rule provided by the training set.

Let

e POE(N,) be the POE value for a tested specific rule v, as provided by the

training set.

o E(N,) = —In(POE,(N,)). This is the energy value to be stored in the

network for specific rule v, as given by (3.8).
o E(N,) be the energy of specific rule v when asserted on the network.

For a network with only first order nodes, we know that

1
E(N-,) = -9- Z Z w;jn;’n} (3.10)
where N, = (n],n3,---,n},) for an m node network, the state of node & for training

set rule v is n} ¢ {0,1}, and 7 and j index the first order nodes in the network
(assuming 0 bias).

Let us define

G =Y {EN) = E(N)PP +an T Y} (3.11)

G is a cost function that represents the sum squared error between the asserted
and desired energy value of a tested specific rule. By selecting an appropriate o, and
minimizing G, the energy difference will approach 0 for all rules in the training set.
When this occurs, the POE of all tested specific rules will be accurately represented

by the network.

62

We can show that the function G is strictly convex. If G is strictly convex,
it possesses a single minimum value; i.e., minimizing G will produce only one so-
lution. Therefore, the relationships between symbols for a given training set will =
always map to the same weight representation. Also, a strictly convex function over
a convex space contains no local minima except the global minimum. If G is strictly

convex, a simple technique can be used to find its minimum value.

Theorem 3.1: G is strictly convex. |
Proof:

Let i
W11

w12

w2

| Wmm

This is the column vector representation of the weight matrix.]

r "

-
nin,

Y,,7Y
n Ny

S,=| (3.13)

This is the column vector representation of the node pairs for the tested specific rule

~. We can see that

wTs, (3.14)

o

1
E(N.,) = 5 Z Z wijn?n} =
v 7

—

63

and we know that

wTs, >0 (3.15)
Therefore,
(WTs,)? = WTs,STW 20 (3.16)
for all W. If we let
§=35,57 (3.17)
then
YT winln])? = WISW >0 (3.18)
Y t g

By (3.18) the matrix S is positive semi-definite over a convex space defined on W.

If W # [0], we can see that
aWIW = WT(o,)W > 0 (3.19)
where I is the identity matrix and a;, > 0. Therefore,
WIS+)W >0 (3.20)

which indicates that § + ;1 is positive definite over a convex space defined on W.
It is known that a function possessing a positive definite Hessian matrix is

strictly convex. Since § + a;I is the Hessian of G, G is strictly convex over a convex

space defined on W. Therefore, G possesses a single minimum.

Q.E.D..

It is also known that a positive definite function possesses no local optima
except for the global minimum. The minimum of G can therefore be found using a
simple gradient search technique. It may be possible to use an accelerated technique
such as constrained conjugate gradient to find the minimum. One must be careful,
however, to insure that the accelerated technique doesn’t require inversion of the S

matrix, since it is very large. Using an active contraint technique may work well

64

if combined with a unconstrained search method, since the constraint matrix may

often be singular.

The gradient of G with respect to the weights can be expressed as

QZ{E N,)}nln] + 201w;; (3.21)

aw. i

subject to w;; > 0. The minimum of G can be found numerically by iterating on

oG
wi; = Wi — €5 (3.22)

ow;;
for all weights w;;, and a small positive step size . The correct weights are found

as all the partial derivatives approach 0.

3.3.1 Training higher order nodes

Tuae o term in (3.11) allows the function G to be strictly convex, instead of
convex, and thereby insures a single solution. The term affects the weights by forcing
weight values to be as small as possible without greatly disturbing the difference
between the asserted and desired energy for a specific tested rule. We will call this
term a “forcing function.”

We have stated that equation (3.11) applies to training a network with only
first order nodes. If second order nodes are included in training, (3.11) must be

modified to

G = Z{E(N.,) - Eg(N_,’)}2 + o Z ZW?J + aq Z ; w?,, (323)

where 7, j denote first order nodes and h denotes second order nodes. The gradient

for the second order connections 1s

-~

a‘fi = 2 (B(N,) - (Nl + 2oawi (3.24)

for second order connections. The gradient in (3.21) is still correct for connections

between first order nodes.

(S

In (3.23), the term
ar) w’; (3.25)
LI

is used to minimize the weights between first order nodes. For this term, the indices

¢ and j index first order nodes only. Similarly, the term

az }: > wh (3.26)

is used to minimize the weights between second order nodes and first order nodes.
For this term, the index h represents higher order nodes. It is important to remember
that the higher order nodes only appear on the robotic action side of the ARM, and
connect to effect nodes on the input side of the network.

There is a purpose for separating the weight forcing function into two parts
(3.25; 3.26). It is generally desirable for the network to assume that interaction
between symbols is a first order relationship. Only when first order relationships
cannot adopt the proper representation should higher order nodes be used. If ex-
isting higher order nodes are unnecessary. the term in (3.26) will force all of its
connections to go to 0. If a higher order node exists with connection weights of 0
to each first order node, the higher order node has no effect on the energy of any
specific rule. This node can be removed or “pruned” from the network without
changing the representation of any rule in the training set. This reduces the num-
ber of higher order nodes required by the network, and prevents a combinatorial
explosion of nodes from occurring.

To implement this strategy, @, should be much less than ;. This allows weight
to build up in first order connections by penalizing excessive connection weights from
higher order nodes. Actual experimental values for a; and a; are presented below.
Of course, if third. fourth, - - -. order nodes are needed for representation, each would

require a forcing function with constants

g <ay<Qz--: (327)

66

added to the cost equation G.

3.3.2 Developing higher order nodes

With a weight training technique outlined, it is now possible to discuss the
development of higher order nodes in the network. Initially, the robotic action
portion of the network contains only first order nodes. The network is trained using
gradient descent (3.22) and eventually the magnitude of the gradient approaches 0.
When the magnitude of the gradient is within an acceptable neighborhood of 0, the

descent is stopped, and the value
G, = (E(N,) = E(N,)} (3.28)

is computed for each rule v in the training set. For each rule v, if G, is within
an acceptable neighborhood of 0. the training is complete, and the training set has
been accurately modeled by the network. If the gradient is near 0 and G, is not
acceptable, this indicates the network was unable to develop suitable weights for the
training set. In this case, higher order relationships exist between symbols in the
specific rules that the first order weights were unable to sufficiently represent.

At this point, higher order nodes must be added to the network. One inefficient
method would be to add second order nodes for each pair of symbols for each specific
rule in the training set and then retrain using the gradients given by (3.21) and
(3.24). For large training sets, excessive computation would be required to compute
all the gradients. Many of the second order nodes would be unnecessary, and all
their connection weights would go to 0.

In general, a rule whose asserted POE value is much greater than its actual
POEisa likely candidate for possessing a higher order relationship. If the asserted
POE value is higher than the desired POE value for the rule, this indicates that the
connection weights were not allowed to assume a large enough value to accurately

represent the rule. This is due to the connection overlap between this rule, and other

67

rules that want the connection weight to assume a lower value. Additional degrees of
freedom are required to build up the weight required by this rule in order to achieve
a lower POE value; however, all first order relationships have been exhausted by
the current network. The additional degrees of freedom for this “higher order rule”
must come from connections to higher order nodes.

Often, rules in the training set that overlap first order connections with a
higher order rule are not accurately represented after the initial training. Since the
higher order rule tries to add extra weight to the first order connections, it tends to
reduce the POE values for other rules that use this connection. Overall, therefore,
the presence of higher order relationships can be detected by an “averaging” of
asserted POE values over the training set.

The method adopted in this work uses the heuristic information discussed
above to add higher order nodes as necessary, and to prune them after each iteration.
After the initial training, the rules in the training set whose asserted POE values are
much greater than their desired POE values are selected. Since rules in the training
set overlap connections, these rules force other training set rules to assume bad
representations. Adding second order nodes for these rules may add the required
degrees of freedom to allow the network to achieve a suitable representation for all
rules in the training set. The network is retrained, and the unnecessary second order
nodes are discarded. If G, is still not acceptable for each rule in the training set,
the next set of poorly represented rules are selected and the process continues. If all
rules are exhausted and the representation is still not accurate, the process repeats
itself with third, fourth, etc. order nodes. The algorithm proceeds as follows

Let.

-~

o O, be the gradient cutoff.

¢ O; be the desired accuracy of a specific rule in the training set.

68
©; and O, are variables denoting limits of the POE error band for higher order

node consideration.

©s be the minimum connection weight allowed before the connection is as-

surned to be unnecessary.

H, is the set of training set rules that contain poorly represented POE values.
m be the number of first order nodes.

m; be the number of higher order nodes.

Dif ferror be the POE error band for higher order node consideration.

~ be a training set specific rule.

69

Repeat

1. For: = 1tom and for j = 1 to m,

(a) Compute :T%
(b) Let w;; = wij — eﬁ%

Until T Ti(EX)? < &
Let n=1

While ||G, || > ©, for any rule v in the training set do
l.L.n=n4+1
2. 93 = 1.0

3. ©, = Differror

4. While ||G,4|| > ©; for any rule v in the training set and all training set rules
not exhausted do

(a) Let H, = {v:©3> POE(N,) - POE,(N,) > 0; — 64}
(b) For each rule v ¢ H,, add all order n nodes to network.
(c¢) Repeat
i. For: =1 to m, and for j = 1 to m,
! A. Compute %
B. Let w;; = w;; — e£=
ii. Fori =1tom and for A =1 to my;,
A. Compute £=

B. Let Wip = Wip — 6ﬁ

dwin

(d) Until &, T;(2E) + i Ta(2Z)+ < 6,

Fwyp

70

(e) Remove the second order nodes that have all connection weights less than

Os.
(f) Compute G, for each rule v in the training set.

(g) ©;=0; — 9,
5. end

end
Using this algorithm, the network undergoes a series of expansions and contrac-
tions until the proper nodes are added that encompass the higher order relationships

present in the training set.

3.4 Some Training Examples

This section presents several sample ARM networks and demonstrates the
resx;lts of the training procedure. The example evolves from simple, first order
nodes in Iigusss .6 and 3.7 to second order aodes in Figures 3.3 and 3.9. In these
figures, if no connection appears between robotic action and effect nodes, it indicates
that the connection weight is 0.

Figure 3.6 presents a training set of three tested specific rules. As demon-

strated by the training set, the robotic action
SSRMS DEPLOY ORU TOOLSET2 — (3.29)
has a difficult time achieving the effect

ORU IS -DEPLOYED (3.30)

-~

since the POE value for this rule is only 0.30. A POE of 0.30 corresponds to an
energy value of 1.20 by (3.8). The sum of the weights for this specific rule when

asserted on the network, as given by (3.10), must equal 1.20 after the network has

!

been trained. If each specific rule in the training set is asserted one at a time on
the network in Figure 3.6 and the POE of each rule is calculated, one can see that
the network has achieved suitable representations.

Based on the other two rules in the test set, the training procedure allocates
most of the weight to the connection between nodes SSRM S (robotic action node)
and ORU (effect node), and to the connection between nodes TOOLSET? (robotic
action node) and ORU. These inhibitory connections indicate that the SSRMS
has a hard time affecting the ORU and that TOOLSET? also cannot affect the
ORU.

Figure 3.7 adds another specific rule to the training set, and the network is
retrained. The new rule indicates that TOOLSET? can reliably affect the ORU.
Therefore, most of the cause of the previous difficulty is attributed to the connection
between nodes SSRMS and ORU.

Figure 3.8 adds a rule that demonstrates that the SSRMS can affect the
ORU reliably. Inhibition can no longer be placed solely on first order connections,
because adequate representation of all the rules in the training set would not be
possible. The network deduces that a second order relationship must exist, and
creates six second order nodes corresponding to the pairwise combinations of the
robotic action symbols of (3.29). The network is retrained, the second order node
DEPLOY + ORU is found to be unnecessary, and is pruned. The remainder of the
weight that cannot be assigned to first order connections is divided evenly among
the connections between second order robotic action nodes and effect nodes.

In Figure 3.9, a final rule is added to the training set. During retraining, this
rule causes the pruning of two more second order nodes that are deemed unnecessary.
During retraining, therefore, a total of six second order nodes were added, of which
three were subsequently removed.

In each of the training sets, the following constants were used.

72
FTS DEPLOY ORU TOOLSET1 -> ORU IS_DEPLOYED POE: 0.95
SSRMS DEPLOY ORU TOCLSET2 -> ORU IS_DEPLOYED POE: 030
SSRMS DEPLOY MSC TOOLSETZ2 -> MSC IS_DEPLOYED POE:0.92 .
T S
output
.042
.026
\O DEPLOY
CRU MSC
.535
TOQLSET! TOCLSET2]

Figure 3.6: A training example

73

FTS DEPLOY ORU TOOLSETT -> ORU IS_DEPLOYED POE: 0.95
SSRMS DEPLOY ORU TOOLSET2 -> ORU IS_DEPLOYED POE: (.30
SSRMS DEPLOY MSC TOOLSET2 -> MSC IS_DEPLOYED POE: 0.52
FTS ACTUATE ORU TOOLSET2 -> ORU IS_ACTUATED POE: 0.88

\O .042 O

DEPLOY ACTUATE
ORU MSC
.128
TOOLSET1 TOGQLSET2

Figure 3.7: A second training example

.128

74

FTS DEPLOY ORU TOOLSET! -> ORU IS_DEPLOYED POE: 0.95
SSRMS DEPLOY ORU TOCLSETZ -> ORU IS_CEPLOYED POE: 0.30
SSRMS DEPLOY MSC TOQLSZET: -> MSC IS_DEPLOYED POE: 092
FIS ACTUATE ORU TOOLSET2 -> ORU IS_ACTUATED POE: 0.23
SSRMS POSITION ORU TRUSS -> ORU IS_AT TRUSS POE: 0.4

DEPLOY ACTUATE POSTION
ORU .176 MSC
N\
.042

SSRMS SSRMS DEPLOY - ORU
ORU TOOLSET2 TOOLSET2 TOOLSET2

Figure 3.8: A training example with higher order nodes

75

FTS DEPLOY ORU TOOLSET! -> ORU IS_DEPLOYED PGE: 095
SSRMS DEPLOY ORU TOOLSETZ -» GRU IS_DEPLOYED POE: 030
SSRMS DEPLOY MSC TOOLSETZ -> MSCIS_DEPLOYED PQE: (.92
FTS ACTUATE ORU TOCLSET2 -» QRU IS_ACTUATED POE: 083
SSRMS POSTTION ORU TRUSS -> QRU IS_AT TRUSS PCE: 094
SPDM DEFLOY ORU TOCLSETZ -> ORU IS_DEPLOYED POE: .29

m.
O
IS_AT
SO . opac
O oupat
SPOM
O
POSTION
O
ORU .106 MsC .313
313
O ®
TOOLSET: TOOLSETR TRUSS
~& S ~0)
SSaMS SSRMS SSRMS
DESLOY ORU TOOLSET2

Figure 3.9: A second training example with higher order nodes

76
Table 3.1: Convergence and final error for test examples
Ezample || [terations | Maz (G,)* (G,)* -

e 0 < w;; <1, the bounds on the weights. I
e ¢ = 0.05, the gradient step size.
e Dif ferror = 0.25, the error band for rule selection.
e ©, = 10~-%, the minimum gradient before stopping.
e ©; = 5 x 1073, the maximum allowable error for a rule in the training set.
. ©; = 1 x 10~*, the minimum weight before pruning is allowed.

The assignment of a; and a3, which are the forcing function constants, is discussed

below.]
The number of gradient calculations required for each example, the square of

the maximum error of a training set rule ((G4)?), and the total sum square error for

the training set (. (G,)?) are provided in the Table 3.1. The training technique led

to extremely accurate representations for each of the ruies, and converged quickly

to the final weight values. These examples serve to illustrate the training procedure. '
Although the training sets presented here were small, more complicated ones have
been tested. Chapter 6 provides a case study that includes a much larger and more
difficult training set for the network.
|

-3
-1

3.4.1 Selection of training constants

As mentioned in section 3.3.1 of this chapter, the training algorithm requires
the selection of constants o; and a, for the forcing functions. We know that a; < a3
to insure that as much weight as possible is assigned to first order relationships. This
section details the selection of these constants.

We can picture the function G as a quadratic. The constant a; determines the
shape of the area around the minimum of the quadratic. If ; is too small, the area
around the minimum is rather flat. This leads to a gradient that changes slowly
as the descent procedure approaches the minimum of G. A slower gradient descent
requires more descent steps. Therefore, if a; is too small, the training algorithm
will take a long time to converge.

On the other hand, if &, is too large, the function G will sacrifice accurate
representations of POE values in order to minimize the connection weights. This is
unacceptable.

We can determine the maximum value of the forcing function constants for a

given degree of accuracy. Let us define
e ¢, a given weight step size.
o A=|E(N,) - E,(N,)||, the desired accuracy.
® Wmar, the maximum allowable weight value for any connection.
¢ a, a forcing function constant.

We want to insure that as a weight approaches its maximum value, the function
G will decrease if the desired accuracy has not been met. If is too large, G may
increase due to the forcing function term, and the desired accuracy will never be

reached. This becomes significant as a weight approaches its maximum value, where

the forcing function becomes the largest. In other words;
{IE(N,) = E(N)II} + o(wmaz — €)° > {| E(N,) = Eo(N,)l| - €}* +aw],,. (3.31)

This is equivalent to

A% + a(Wmezs — €)* > (A - €)%+ auw? . (3.32)
or
24 —-¢
—_——— 3.33
a< 2Womar — € ()

If we let the step size approach 0, then

24 —¢ A
I = 3.34
!l—r-no 2wma: —_ wm“ ()
So
A
< 3.35
a wmat ()

insures that we can represent a rule to a desired accuracy A given a bound on each
weight, Wmaz-

Experiments were conducted to determine suitable values for o, across a range
of training sets that required only first order representations. It was decided that
magnitude of the error between the energy value of each asserted specific rule and
the desired energy value of the rule should not be greater than 5 x 10~2. This leads
to an extremely accurate POE représentation (within 99.5 percent of the desired
value, as given by (3.8)) for the rules in the training set. Given this constraint, o
is bounded by 5 x 1073 for wmaz = 1, by (3.35). Experimentation showed that o

could assume any value in the range

-~

5x107° <oy €5 x107° (3.36)

without requiring excessive gradient iterations (i.e., more than 10 times the number

of iterations presented in Table 3.1).

79

We know that oy > a;. Several experiments were conducted that varied a;
while a; was fixed at 1 x 10~* to examine the ability of the training procedure to
eliminate second order nodes by allowing their weights to approach 0. Again, a5

must be less than 5 x 103, It was found that values of
1x1073 < a; <5x107° (3.37)

effectively eliminated non-essential second order nodes without sacrificing the POE
representation in the network.

Based on this data, a; was set at 1 x 10~* and a, was set at 4 x 10~3 for all
training sets. The experimentation showed that a; had to be around 40 times larger
than a, to develop an acceptable representation.

If third order nodes are required by the network, it is necessary to add a
third forcing function with constant «3. It is likely that the relationship between
o3 _a.nd a, would be similar in magnitude to the relationship present between a;
and a,; to develop an acceptable POE representation in the network. To accomplish
this, @; would have to be reduced, along with a, to guarantee that o3 < 3 x 1073
Although no experimentation was performed with third order nodes, one can see that
this reduction in a; would significantly increase the number of gradient iterations
required until convergence. If nodes higher than third order are necessary, the
training time would increase even further. This demonstrates a weakness of this

training technique.

3.5 Predicting POE Values for Untested Specific Rules

Prediction using the ARM is the ability to employ developed relationships
bet;veen symbols to assign POE values to specific rules that have not been tested.
When planning, the ability to predict POE values is essential since the number
of tested specific rules is quite small compared to the number of possible specific

rules. For a given planning situation, it is conceivable that no tested specific rule

80

provides an acceptable course of action. Instead, an untested rule must be selected
to achieve a desired effect. To pick a “good” untested specific rule, therefore, one
must understand the relationships between the symbols in that rule, and how these
relationships affect its POE value.

As stated earlier, one of the difficulties in developing a training procedure
for the ARM network is the fact that different specific rules share the same sets
of symbols. Since this occurs, these rules also share the same sets of connections.
While this makes training difficult, the sharing of connections forms the foundation
for prediction.

The training procedure develops relationships between symbols by assigning
weights to connections in the network. When untested specific rules overlap symbols
with rules that are in the training set, their symbol relationships overlap as well.
The weighted connections that form these relationships alter the energy value for
the untested specific rule, which in turn alters the POE value for it. Therefore, the
training procedure creates relationships that can be used to predict the POE value
for untested specific rules.

Consider Figure 3.6. Any untested spgciﬁc rule that contains SSRMS or
TOOLSET? in the robotic action and ORU in the effect will have a decreased
POE. Similarly, in Figure 3.7, the decreased POE is largely limited to untested
rules that have SSRMS in the robotic action and ORU in the effect. Relationships
that alter POE values are also demonstrated in Figures 3.8 and 3.9.

Detailed examples of prediction are shown in the case study, which is presented

in Chapter 6.

-~

3.5.1 Untrained weights vs. zero weights

The training procedure creates large weights in some connections, and assigns

small, or even zero weights to other connections. Some connections will approach

81

a weight of zero to insure that it accurately models a relationship between sym-
bots. This indicates that the symbols work well together, and possess little or no
inhibition.

On the other hand, the nature of the forcing function in G insures that if a
connection is not used in the training set, its weight will also go to 0. This may be
a problem, since it forces the network to assume that symbols have no inhibition if
they are not part of the training set. This allows untested specific rules that have no
connection overlap with the training set to assume a2 POE value of 1.0, or absolute
certainty.

It is more appropriate that connections not used by the training set be assigned
a default uncertainty value. After training, the connections that were not present
in the training set could be assigned a nominal weight value, dictating the base
uncertainty of an untested specific rule. To accomplish this, we must assign a base
POE value to untested specific rules. Then, we can determine what each weight
should be in the rule, by dividing the corresponding energyv equally among all the
first order connections for the rule. If a weight is left untrained by the training set,
it would be assigned this weight value.

For example, if we assume a base POE value of 0.80 for untested specific rules,
this corresponds to an energy of 0.223. If each rule contained 12 connections (e.g., 4
robotic action nodes connecting to 3 effect nodes), each untrained connection would

0223

be assigned a weight of %22 or 0.018. All trained connections would maintain their

trained weight values.

3.5.2 Examples of prediction in the ARM

This section uses the example presented in Figure 3.6 to demonstrate the
prediction capabilities of the ARM. The example was extended to include other

ACTORHRs, ACTIONs, and OBJs. All of the connections not mentioned in the

82

training set for example 3.6 are assumed to be untested. A base POE value of 0.80
was assigned to completely untested rules, so the untested connections have a value
of 0.018.

The general nﬂes used are as follows.

< manipulator > ACTUATE < object> <tool> —
< object > IS - ACTUATED NULL

< manipulator > ATTACH < objectl > < object2 > —
< objectl > IS — ATTACHED —-TO < object2 >

e < manipulator > DEPLOY < object > <tool> —
< object > IS-DEPLOYED NULL

< manipulator > POSITION < object > < .scacon > —

< objectl > IS — AT < location >

< transpor‘:~-> TRANSPORT < object > < location > —

< objectl > IS — AT < location >

The value of a general rule inhibitory connection was 1.0. Each of the following
specific rules was asserted on the network, and the network responded with the

POE values shown.

1. FTS DEPLOY ORU TOOLSETl —
ORU IS-DEPLOYED POE: 0.950

'!\J

SSRMS DEPLOY ORU TOOLSET2 —
" ORU IS-DEPLOYED POE: 0.300

3. SSRMS DEPLOY MSC TOOLSET2 —
MSC IS-DEPLOYED POE: 0.920

83

4. MT TRANSPORT AWP TRUSS —
AWP IS - AT TRUSS POE: 0.800

5. SPDM TRANSPORT AWP TRUSS -
AWP IS - AT TRUSS POE: 0.295

6. SSRMS POSITION ORU TRUSS —
ORU IS - AT TRUSS POE: 0487

7. SPDM POSITION ORU TRUSS -
ORU IS - AT TRUSS POE: 0815

8. FTS POSITION ORU TRUSS —
ORU IS - AT TRUSS POE: 0.830

9. JRMS DEPLOY AWP TOOLSET2 —
- AWP IS -DEPLOYED POE: 0.858

10. JRMS DEPLOY ORU TOOLSET2 —
ORU IS - DEPLOYED POE: 0514

11. SPDM DEPLOY MSC TOOLSET1 —
MSC IS - DEPLOYED POE: 0.946

The above responses have the following explanations.

1. This specific rule is in the training set.

N

This specific rule is in the training set.
¥ This specific rule is in the training set.

4. No connections used by this specific rule are in the training set. Therefore,
each weight in the rule was assigned a default value producing the default
POE value of 0.80.

84

5. The SPDM is not a member of the class < transporter > so this specific
rule violates a general rule. The violation adds 1.0 to the energy value of the

configuration, and results in a low POE value.

6. This rule demonstrates how the inhibitory connection between SSRMS in the
robotic action and ORU in the effect lower POE values for untested rules that

use this connection.

7. The ORU robotic action to ORU effect connection in this rule has assumed
the value 0 after training. All other connections are untrained, and possess
the base weight value. Therefore this specific rule has a POE slightly above

the base untrained POE value.
8. Two connections in this specific rule have been set to 0 by the training set.

9. This specific rules demonstrates the use of several symbols that work well

together along with some untested connections.

10. This rule violates the STATE to ACTION relationship given by the general

rules.

11. This specific rule employs many trained connections that work well together,

as specified by the training set.

Overall, we see that the ARM can provide consistent predictive POE values

for untested specific rules.

3.6 Extensions to the ARM model

-~

Two features are added to the ARM model to make it more versatile. The first
feature allows the user to encode knowledge into the ARM network, if so desired.
The second feature provides a measure of confidence to the user for the POE value

of a specific rule.

85

3.6.1 The Knowledge Set

From previous discussion, it is known that the ARM is trained on specific rules
that have been tested in the robotic environment. The training set is constructed
by the user to evaluate the ability of agents to wérk together and achieve a change
in state of an object in the world. It is likely, however, that particular combinations
of agents will not be tested if the user knows that they function poorly together,
or lead to “disaster” situations. Therefore, the training set may not include infor-
mation about symbols combinations that are known by the user to be avoided. If
these combinations are not trained on the network, their connections are assigned
nominal weights by the base POE assignment procedure outlined in section 3.3.1.
Unfortunately, this may allow the ARM to assign a high POE value to untested
specific rules that contain subsets of these avoided symbol combinations.

To remedy this problem, a feature is added to the ARM network that allows
the user to encode information about symbol combinations that should be avoided.
This feature is called the knowledge set. and is composed of a set of knowledge
rules in which the user encodes the information. A knowledge rule is created from
a general rule by providing set of symbols or symbol classes in the robotic action
that should not be used together to achieve a set of symbols or symbol classes in

the effect. For example, given the general rule
<dez> ACTUATE <obj> <tool> —

<obj> IS—ACTIVATED NULL

the knowledge rule

<dezx> NULL NULL TOOLSET1 -

NULL IS - ACTIVATED NULL (3.38)

C-2

86

is employed to show that dextrous manipulators should not be used with
TOOLSET! when trying to achieve the state IS — ACTIV ATED. Similarly, given

the general rule
<dez> ATTACH <obj> <obj> —

<obj> IS—ATTACHED —TO < obj>

the knowledge rule
FTS ATTACH NULL NULL —

NULL NULL TRUSS (3.39)

states that employing the FTS to ATTACH should not be attempted when the
TRUSS is the indirect object of the effect. The NULL symbols in each of the above
knowledge rules are simply placeholders.

The knowledge rules are mapped onto the ARM network using a technique
similar to general rule mapping. For a first order relationship (only one non-NULL
level in the robotic action of a knowledge rule), a high weight inhibitory link is
created from each symbol in the specified symbol class of the robotic action to each
symbol in the symbol class designated in the effec: of the knowledge rule. For second
order relationships, (two non-NULL levels specified in the robotic acf.ion), second
order nodes are created. These nodes are formed by a pairwise combination of
each symbol in the first specified symbol class of the robotic action of the knowledge
rule, with each symbol in the second specified symbol class. A high weight inhibitory
connection is created from each of these second order nodes to each symbol in the
syx;xbol class designated in the effect of the knowledge rule. For higher order nodes,
the process is the similar.

The knowledge set, therefore, provides the user with another mechanism for

specifying relationships between symbols in the network.

87

3.6.2 The Confidence Factor

When a specific rule is asserted on the ARM network, the network responds
with the POE value of the asserted rule. If the specific rule is not a member of the

training set, the POE value is predicted from

¢ weights developed by rules in the training set that overlap the asserted specific

rule, and

e weights that are not developed by the training set, but are assigned base

probability values, as described in section 3.5.1.

If an asserted untested specific rule contains connections that are not in the
training set, some of its POE value comes from the base probability weights. Since
these connections are not influenced by the training set, however, it is unknown
what their uciuai weights should be. Although the base probability weight is used
to approximate expected behavior, it may not provide adequate representation when
an untested specific rule contains many untrained connections, and has to rely largely
on the base probability weights. Unfortunately, the POE value alone does not allow
a user to discern untested specific rules which contain a large number of untrained
connections.

If an untested specific rule shares many of the same symbols with a specific rule
in the training set, it is very similar to the tested rule. The more similar an untested
rule is to a tested one, the more likely the POE value of the untested rule can be
reliably predicted. On the other hand, the less similar an untested rule is to any rule
in the training set, the less reliable its predicted POE value may be. Unfortunately,
the POE value of an untested specific rule does not provide a measure of the overlap

between the rule and each specific rule in the training set.

88

To provide the user with a “measure of confidence” in the POE value for an
untested specific rule, the con fidence factor (cf) is presented. In this implementa-

tion, the cf of an untested specific rule is a function of:
1. The percentage of trained connections in the untested specific rule.

2. The maximum of the percentages of the connection overlaps with each specific

rule in the training set.

It is possible to define other valid confidence measures, if the user desires.

Mathematically, the cf used in this case study is given by:

cf(N) = | SR &L (3.40)

where
e N is a particular specific rule asserted on the network.

e C is the total number of first order connections for the specific rule in the

ARM network.
e Ci(N) is the number of trained first order connections for specific rule N

e C,(N) is found be determining the number of connections which are the same
between N and each rule in the training set, and then selecting the maximum

of these values.

Using this scheme, a rule in the training set has a cf of 1.0, which is the
maximum cf value, and represents total confidence in the POE value. All untested
speéiﬁc rules have values between 0 and 1. The larger the cf for an untested specific
rule, the more confident the user can be that the POE value accurately reflects the

symbolic relationships in the rule.

3.7

89

Conclusions

This chapter detailed the design of the Associative Rule Memory, as presented

in Figure 3.10. The main contributions of the ARM are as follows.

3

The design of a neural network model that is able to represent a symbolic

grammar comprised of a robotic action and effect.

The ability of this model to maintain instantiations of the grammar with a real
valued number representing the probability that the robotic action achieves

the desired effect.

A training procedure that guarantees that the network will develop accurate

POE representations for all specific rules in the training set.

A training procedure that develops weighted connections that represent the

reliability with which a robotic action symbol affects an effect symbol.

A technique for adding higher order nodes when necessary, and pruning them

when they are unnecessary.

A demonstration that the training procedure builds connections that can be

used for predicting POE values for untested specific rules.
As stated in the chapter, the ARM model is bound by the following constraints.

The POE value is a function of the agents in the robotic action and effect, and

has not been altered by any other environmental influences.

A one-to-one symbol to node mapping is used instead of a distributed repre-
sentation. This leads to a large number of nodes, but simplifies the symbol

relationships stored in the connections of the ARM.

90

3. The development of hidden nodes may lead to slower training of the network
if third, fourth or even higher order nodes are required for accurate POE

representation.

Overall, the training examples demonstrated that the network could develop
extremely accurate POE representations for the rules in the training set. Also, the
training examples allowed us to explore the predictive capabilities of the ARM, which
allows the exploitation of implicit relationships in the training sets, and produces
reasonable POE values for untested specific rules.

This chapter also presented the knowledge set and the confidence factor, two
enhancements to the ARM model. The knowledge set allows the user to encode
known relationships in the world that are not present in the training set. The cf
provides the user with a measure of confidence in the POE value of an untested

specific rule.

ORGANIZATION OF MODEL
Represenrarion
of Robodc General Rules Specific Rules
Acdons
Soucture of PCE
Model Values
Input
) 4 1
Desired Effecx
PLANNING

|

Robodc Acton

Setof High
POE Robotc Acdons

Ourpuc

Figure 3.10: Block diagram with ARM displayed

Associatve Recall of Acdons
(Minunize E(n))

91

Model of
POE values
for Robouc
Actons
(ARM)

CHAPTER 4
ASSOCIATIVE RECALL - AN OPTIMIZATION TECHNIQUE

The functions of the Associative Rule Memory are as follows.
1. Storage of specific rules.
2. Storage of general rules.

3. Generalization of tested specific rules to predict POE values for untested spe-

cific rules.
4. Associative recall of high POE robotic actions given a desired effect.

This chapter examines the last of these ARM functions, associative recall as shown
in the block diagram 2.1.

Associative recall is the process of extracting a stored inference or trace from
a memory by providing the memory with a “key” that has been matched to the
inference. For this research, the memory key is a desired effect that must be achieved
by the robotic system. The stored inference in the ARM is a robotic task that
achieves the desired effect. In other words, by providing the ARM with a desired
effect as input, the ARM should produce as output a robotic task that has a high
probability of achieving the desired effect, along with the probability of effect.

In artificial neural networks, associative recall is performed by asserting a set
of input nodes, the key, and allowing network to “settle” the output nodes on a state
that is the matched memory trace. Most ANN's find the associated memory trace
bf optimizing an energy measure that is a function of the weights in the network
and the current state of the nodes. Examples of networks that perform recall in this

manner are Hopfield Networks [44] and Boltzmann Machines [53].

93

Both of these ANN’s represent consistency between asserted nodes by the
energy formula given in (3.3). For these networks, a high energy value implies a
large inhibition between sets of asserted nodes. Large inhibition is present when the
memory trace asserted on the output nodes does not match the key presented on
the input nodes.

The lower the value of E(IN) for a particular input key, the smaller the inhi-
bition that exists between the key and the recalled inference present on the output
nodes of the network. Therefore, associative recall is the process of finding the set of
asserted output nodes that minimizes the function E(IN) for a given set of asserted
input nodes.

In the previous chapter, we developed a method for storing the probability of
effect for provided specific rules in the ARM, and demonstrated the generalization
of these probabilities to rules that have not been explicitly tested. The procedure
uses the weights of the network to store the probability of a specific rule as an energy

value. Since the relationship between probability of effect and energy is given by
POE(N) = BN (4.1)

we can see that a high probability implies a low energy value. Specifically, a prob-
ability of effect of 1.0 has an energy value of 0.0, and the energy increases for all
probabilities less than 1.0. Further, violations of general rules incur an increased
energy because each violation adds positive weight to the value of E(IN).

The design of the ARM implicitly allows associative recall to be performed in
ways similar to the ANN’s discussed above. By minimizing the value E(IN) of the
AR;M for a particular desired effect (input nodes), the network settles on a set of
robotic action (output) nodes that have a high probability of achieving the desired

effect. The procedure is dscriBed as follows.

1. Assert desired effect nodes (Input).

94

2. Choose a set of robotic action nodes (Output).

3. Assert robotic action nodes and higher order nodes.
4. Calculate E(N). Compute POE(N).

5. If POE(N) is less than desired (non-optimal) go to 2.

6. End. Robotic action that has a high probability of achieving the desired effect

has been found.

Step 2 of the above algorithm is accomplished through an iterative optimiza-
tion technique. In general, given a function f(-) defined on a n-dimensional space
Y™, an optimization technique attempts to find suitable values for the vector X =
(Z1,%2, -+, Za) € Y™ such that f(X) achieves a desired value, often the minimum
or maximum of the function. An iterative optimization function considers the past
history of attempts at optimizing f(-) when choosing the next search point X.

The rest of this chapter is devoted to the optimization technique required by
step 2 of the associative recall algorithm. Section 4.1 describes the shape of the
energy hypersurface, and the requirements it places on an optimization technique.
Section 4.2 compares two suitable optimization techniques, the Genetic Algorithm
and Simulated Annealing. Section 4.3 describes research on reducing the search
time of the Genetic Algorithm using an immigration operator. Section 4.4 develops
a proof that shows that the GA modified with the immigration operator converges
in probability to the optimum of a cost function. Section 4.5 explores representation
issues between the GA and the ARM model. Section 4.6 describes a method for find
sets of high POE robotic actions for a given a desired effect. Section 4.7 outlines

the contributions and concludes this chapter.

95

4.1 The ARM Energy Function

The ARM energy function is defined by
1
EN) = 5 2 Z w;;nin; (4.2)
4 b
where n; is the state of node i (0 or 1) and w;; is the weight of the connection
between nodes i and j. This function maps a binary vector N = (ny,n3, -+,),
(ne € {0,1}) onto a real number bounded below by 0.0.

Several considerations are essential when optimizing this function.
1. The domain of the energy function is discrete and binary.

2. The range of the energy function can have severe discontinuities for neighbor-

ing domain values. Neighboring domain values have a Hamming Distance of

1.

These two constraints rule out most numerical optimization techniques, such
as discrete gradient descent, that would quickly terminate in a locally optimal energy
state. Instead, probabilistic search methods are used to find globally optimal energy
values for the ARM. These methods provide means of escaping or avoiding the

difficult local minima present in the ARM, and allow the function domain to be

binary.

4.2 Two Optimization Techniques

Two algorithms that have often been used to solve difficult optimization prob-
lems are Simulated Annealing (SA) and the Genetic Algorithm (GA). Both use a
prol’)a.bilistic selection and generation strategy to develop search points for evalua-

tion.

EAT, S

S

DAL R T

s,

96

4.2.1 Simulated Annealing

Simulated Annealing is the most common technique used to minimize the en-
ergy function in a Boltzmann machine during the process of associative recall. This
technique simulates the annealing process of metal by probabilistically allowing up-
hill steps in a state-dependent cost function while finding the global cost minimum,
or ground state. The algorithm allows control of the search randomness by a user
specified parameter, T'. In true metal annealing, this cost function is the energy of
the system, E, and T is the annealing temperature [57].

Given a small random change at iteration ¢ from the system state
N; = (n1,n2,...,n4) to Nj and the resulting energy change, AE = E(N}) — E(Ny),
if AE < 0, the change is accepted. If the change is accepted, the current state
Ni.1 is set equal to the new state Ni. If AE > 0, the probability the new state is
accepted is

P(Njyy = Nj) = ema5/FsT (4.3)
where Kz is the Boltzmann Constant and T is a user set parameter. By reducing
T along a schedule, called the annealing schedule, the system should settle into a
near-ground state as T approaches 0.

Another method for SA is discussed in (53]. Using this method, if the energy
change between N; and Nj is AE, then regardless of the previous state, accept state

N! with probability

1

1

P(Nijp1 = Nj) = TT a7 (4.4)

Since the domain of the ARM is binary, it should be noted that in both of the
abctve methods, N} is Hamming distance 1 from N;.

The process of Simulated Annealing escapes local minima through its prob-
abilistic search, and converges to the global energy minimum in probability under

conditions detailed in [69]. These conditions force the annealing schedule to follow a

97

exponential decay temperature trajectory, so the convergence to the global minimum
can be extremely slow. Further, SA is an uninformed optimization technique that

cannot exploit the implicit constraints that may be present in the target function.

4.2.2 The Genetic Algorithm

Another technique used to optimize nonﬁnear or discontinuous functions is the
Genetic Algorithm (GA) [70]. In contrast to other random search techniques, the
GA maintains a population of points in the space while searching for the optimum.
For most GA's, each point in the domain is represented by a binary string and has
an associated fitness value obtained by evaluating the cost function at that point.
Since the makeup of the population is changed each iteration to emphasize members
(points) that optimize the cost function, a near-uniform population will develop as
the GA searches for the optimum string.

Each cycle of the GA is comprised of four main phases: evaluation, selection,
recombination and replacement. During evaluation, each member is assigned a
fitness value relative to its cost, such that lower cost members receive higher fitness
values. Based on fitness, members are probabilistically selected from the population
for recombination. These members are called parents. Parental pairs exchange bits
during the recombination process and form binary strings called children. This
process is called crossover. The worst members of the population are replaced by
the children, and the cycle repeats. Details of the algorithm are presented in [71].

In an attempt to prevent population convergence to local optima (premature
convergence), a mutation operator is added to the system. With a new generation
of the population, each bit of every member has a small probability of inverting.
Th; mutation adds diversity to the population and promotes local search and hill-
climbing.

Particular aspects of this algorithm make it a powerful search tool. The

98

crossover mechanism forces search on an n-dimensional hypercube by discovering and
promoting particular substrings (called schemata) that perform well. The schemata
are low-order substrings, where the order or a substring is its length in bits. These
schemata combine to discover the structure of the search space, which may not be
known initially. The discovery and propagation of high performing schemata al-
lows the GA to exploit implicit constraints in the target function. Further, since
the algorithm uses a population of points, many planes of the hypercube can be
searched at once, leading to implicit parallelism [70]. Applications of this algorithm

to optimization problems have been presented in [72, 87, 88].

4.2.3 Some initial experiments: comparing SA and GA optimization

techniques

Some initial experiments were performed to show that the Genetic Algorithm
could be used as an optimization technique for Boltzmann Machines, including the
ARM. These results were originally described in [16].

A Boltzmann Machine is created containing 15 nodes, N = (n;,n,,---,ns).
Each node is connected to every other node. Nodes nq and ng form the input to
the network, and their values are fixed at 1.0. The other network nodes form the
output of the network. By changing the values of the output nodes in the network,
the minimum energy of the network can be found. For this purpose, SA and GA
optimization techniques are invoked to find the minimum energy by altering the
output node values.

For the given input, the net has three energy minima corresponding to states
N = {(001010100100100), (110110110001101),(001111101160010)}. The respective
energy for each of these three states is (0.8, 0.6, 1.0). Each simulation technique
attempts to find the global energy minimum of the net, which is 0.6, and corresponds

to the correct output for the given input. The cases presented here show best and

99

worst performance of each technique over 10 trials.

The Genetic Algorithm is set at a population size of 20 members. Each member
is 15 bits long, and represents a complete state of the network. Consequently, each
bit of a member represents the state of one node in the network.

The fitness function assigns values by the relationship
FITNESS(s) = MAXCOST — COST(s)

where s is a member in the population, MAXCOST is the maximum energy of
the network, and COST(s) is the cost of the network if it assumed the state given
by member s. One-point crossover is used and the mutation rate is set at 0.005
mutations per bit. Each cycle selects a set of parents for crossover equal to 80
percent of the population size. Further, the GA is enhanced by replacing the worst
member every two generations with a random member, a detail that will be discussed
below.

Some initial experiments with Simulated Annealing using a heuristic cooling
schedule yielded suboptimal solutions when minimizing the energy of the network.
To prevent suboptimal solutions from occuring during these experiments, Simulated
Annealing is performed using the acceptance criteria in (4.4). The system is cooled

in accordance with the law
Ty (t) _ 1
To log(10 + %)

where T1(t) = temperature at time ¢t and T = initial temperature.

(4.5)

The net state changes in Hamming distance 1 increments.
~ Figures 4.1, 4.2, 4.3 and 4.4 present the best and worst performance of each
algorithm over 10 trials. The GA found the minimum energy string between the 20th
and 180th population. Since there were 20 strings per population, this indicates that

between 400 and 3600 search points had to be generated. The best performance by

100

Simulated Annealing required over 5500 generated points. The worst performance
did not find the minimum after evaluating 12000 generated points, which was the
most attempted.

The results of these limited experiments clearly demonstrate the ability of the
Genetic Algorithm to perform the task of associative recall in a Boltzmann Machine
at least as well as Simulated Annealing. Also, the GA is able to exploit the implicit
constraints associated with a problem, such as the relationships between nodes in
the ARM, which Simulated Annealing cannot do. Further, Simulated Annealing
is controlled by an exponential decay temperature trajectory in order to guarantee
convergence to the global optimum solution, which can inhibit SA from finding quick
solutions to easy problems. For these reasons, the Genetic Algorithm seems to be
a better optimization technique than Simulated Annealing for associative recall of
the ARM. Therefore, we have chosen the GA as the optimization technique for the
ARM. This is shown in Figure 4.5.

4.3 Reducing the Search Time of a Genetic Algorithm

The next several sections present and analyze a new technique for reducing
the number of function evaluations required by the GA to find the global optimum
solution. Although the test suite used in experimentation contained a broad class

of functions, direct application can be made to Boltzmann Machines and the ARM.

4.3.1 An introduction to immigration

The tradeoff between exploration and exploitation in serial Genetic Algorithms
for function optimization is a fundamental issue [71]. If a GA is biased towards ex-
ploitation, highly fit members are repeatedly selected for recombination. Although
this quickly promotes better members, the population can prematurely converge to

a local optimum of the function. On the other hand, if a GA is biased towards

Energy Vahue of Network

Encrgy Value of Network

G 500 1000 1500 2000 2500 3000 3500 4000 4500 $000
Number of Points Generatad

Figure 4.1: Best performance of GA

0 3500 1000 1500 2000 2500 3000 3500 4000 4500 S000

Number of Points Generatad

Figure 4.2: Worst performance of GA

101

Encigy Value of Network

Encigy Valuc of Naiwaoik

A o ~ [-
-4

o [“w
o [>~

1000 2000 3000 4000 000
Number of Pomxs Genersted

Tigure 4.3: Best performance of SA

& A o -3 [b

o — ~ w
|
——
Ta—
[

nm—
———
e
S
——
———
\-4
i

Figure 4.4: Worst performance of SA

102

103

ORGANIZATION OF MODEL
Representaton
of Robodc General Rules Specific Rules
Actions
Structure of PCE
Model Valyes
Iopuz
v 4
Desired E¥fexx
]
Moded of
POE values
for Robotc
Acdcns
A
R—— (ARM)
Secof High
PQE abodc Acsons
Qupur
‘ Genedce _
Algorithm
Associative Recall of Actions
(Minimize E(n))

Figure 4.5: ARM system block diagram with GA for associative recall

104

exploration, large numbers of schemata are sampled which tends to inhibit prema-
ture convergence. Unfortunately, excessive exploration results in a large number of
function evaluations, and defaults to random search in the worst case. To search ef-
fectively and efficiently, a GA must maintain a balance between these two opposing
forces.

This study experimentally examines an immigration operator that for certain
types of functions, allows increased exploration while maintaining nearly the same
level of exploitation for the given population size. Section 4.3.2 provides relevant
background material on this topic and develops the motivation for this study. In
section 4.3.3, we describe the immigration operator, its incorporation into the eval-
uation, selection and recombination cycle of a Genetic Algorithm, and predict the
behavior of this “Modified” Genetic algorithm. In section 4.3.4, the implementa-
tion of two genetic algorithms is described. One algorithm is based on steady state
GA'’s, and the other is based on restarted GA's as described by Goldberg [78]. Also
described is the implementation of the two GA’s modified with the immigration
operator.

To compare the performance of each GA with and without immigration, a
suite of test functions is developed. Each function is characterized by different
types of local and global optima. The local optima are designed to provide traps
that the genetic algorithm must successfully avoid or recover from to achieve a global
optimum. These functions are defined in section 4.3.5. Section 4.3.6 discusses the
experiments performed on the test suite and presents each GA experiment in terms
of fitness assignment, population sizes, mutation rate and immigration rate. The
results of the GA experiments are examined in terms of the number of evaluations
required to find the global optimum of each function and are presented in Section
4.3.7. It is shown that a GA modified with immigration reduces the average number

of evaluations required to find the function optimum over a range of population

105

sizes. It is further shown that the number of trials requiring an excessive number of
evaluations is reduced for functions in this set. Section 4.3.8 provides conclusions

and recommendations for further research on this topic.

4.3.2 Background and motivation

Population size is one parameter that directly effects the balance between ex-
ploration and exploitation. DeJong [72] notes that increasing the population size
improves long-term performance of 2 GA at the expense of degraded on-line per-
formance for his test suite. In an extensive study, Schaffer et al. [89] test GA
parameters for an expanded suite of functions and measure on-line performance.
The study indicates that functions with many local optima have good on-line per-
formance with larger population sizes; however, the study notes that an excessively
large population imposes an increased number of evaluations per generation and
produces poor overall performance.

As these studies show, increasing the population size of a GA supplements
the amount of “raw material” available for processing. If the necessary material is
present in the initial population, the GA can converge to an optimal solution. If
the initial population size is very large, the optimal schemata may very likely be
present and the optimal solution will be found.

However, large population size can lead to an inefficient GA. The GA processes
the schemata contained in the “raw material” and exploits those schemata that
perform well. As the population size grows and the selection “pie” is divided into
more slices, the exploitation decreases. A decrease in exploitation means that better
schemata propagate at a slower rate. This forces the GA to increase the number
of population samples over repeated generations in order .to determine the optimal

schemata, and slows convergence of the GA.

106

Goldberg [78] also emphasizes the tradeoff between schema processing (ex-
ploration) and convergence rate (exploitation) with regard to population size. To
combat slow convergence in serial GA’s while finding the optimum of a function,

Goldberg suggests using small population GA’s that are restarted after convergence.
The restart procedure consists of keeping only the best individuals of the converged
population and replacing other members by randomly generated individuals. Gold-
berg shows that this procedure maintains a high rate of schema processing, a cost
measure developed to examine GA performance. Intuitively, this technique main-
tains a very high level of exploitation, since small populations rapidly converge to
the best schemata present. Exploration is also enhanced by restarting the popula-
tion with random members after convergence. Therefore, this technique seems to
achieve some balance between the two GA forces.

Given that small population GA’s may not possess the necessary schemata to
find the optimal solution, and large population GA’s can be inefficient in schema
processing, this study examines the effect of continually replacing the worst members
of a GA population wiik random members. The technique is called immigration.
For GA’s of the type tested by DeJong [72] and Schaffer et. al. [89], immigration in-
creases the amount of “raw material” available to the GA, and enhances exploration
without increasing population size. For Goldberg’s restarted GA, immigration al-
lows increased exploration while the population converges, and may prevent quick
convergence to a local optimum. This is especially significant if the test function

contains local optima that are difficult to escape.

4.3.3 A GA with the Immigration Operator

- To balance exploration with exploitation, we propose the following algorithm
that incorporates the immigration operator into the general structure of a Genetic

Algorithm. A preliminary version of this algorithm was originally presented in (16).

107

The Modified Genetic Algorithm

1. Evaluate each member of the population and assign a fitness value.

2. Replace m current worst members of the population with m randomly gener-

ated and evaluated members. (Immigration Operator)

3. Probabilistically select a subset of members based on fitness.

b

4. Recombine selected members to form children.
5. Replace the worst members of the population with children.

6. Mutate some members to maintain population diversity and perform local

search. Mutation is not performed on one copy of the current best member.

With each generation of the GA, random members are immigrated and replace
the worst members in the population. It is important to note that the number of
random individuals substituted into the population each generation (m, called the
immigration rate) is small compared to the size of the population. The advantages

and tradeoffs of immigration are described below.

1. When a non-modified GA is initialized its population of n random members
must contain most of the “raw material” required to assemble the optimal
string through selection and crossover. With smaller population GA's, the
necessary schemata to build the optimal string may not be present in the
initial population. If this is the case. the GA must rely on mutation to bring
in the necessary schemata, which can be very inefficient, especially in problems
with many local optima. The immigration operator allows the GA to sample
many more individuals during search, and more easily acquire the necessary
structure to find the optimal string; however, immigration does not increase

the size of the population, since random members replace poor performers.

108

Therefore, immigration allows a size n population to ezplore the spaceof a

larger population.

2. Since the actual population size is not increased to a.ccomplist; the added
exploration,» the high performing schemata in the population can propagate
at pearly the same rate as a GA without immigration. In contrast, if the
population size is increased to enhance exploration, the schemata propagate
more slowly, due to decreased selection pressure on good schemata. There-
fore, immigration increases exploration while maintaining selection pressure

(exploitation).

3. When a GA operates on a deceptive function [71] low-order schemata that
are present in the optimal string have poor average fitness values. Individuals
containing these schemata perform poorly, and are replaced in the population
during the selection and recombination process. Immigration provides the GA
with repeated opportunities to acquire optimal building blocks, even after they

have been discarded.

4. The inclusion of an immigration operator does force a tradeoff in the GA.
Immigration exchanges poor performers with random members. Each random
member must be evaluated, which may increase the number of evaluations
required to find the function optimum; however, immigrants can also bring
missing structure to the population which should reduce the number of eval-
uations required to find the optimum. Therefore, the tradeoff of increased
evaluations versus increased structure must be examined experimentally to

determine the applicability of immigration in a GA.

One way to look at a GA modified with the immigration operator is as a GA
with a large “virtual” population that maintains much of the selection pressure of

a smaller population.

109

4.3.4 The Implementation of Two Genetic Algorithms

In this study, two different GA’s were implemented, each with and without
immigration. The first algorithm is a steady state GA. Each iteration of the algo-

rithm we used is described as follows.

Steady State GA

X

1. Evaluate each new member of the population and assign a fitness value.

2. Probabilistically select two members from the population based on fitness.

These members are parents.

3. Perform one-point crossover on the parents at a random string position to

form two children.
4. Probabilistically perform mutation on the children.
5. Replace the two worst members of the population with the children.

6. Probabilistically perform mutation on the rest of the population (optional).
The algorithm is modified to include immigration by the addition of the fol-

lowing step.

1.5. Generate and evaluate m random members and replace the m worst mem-

bers of the population with the m random members.

110

The second algorithm is based on Goldberg’s restarted GA. Given a popula-

tion of size n, each iteration of the algorithm proceeded as follows.

Restarted GA

1. Evaluate each member of the population and assign a fitness value.
2. Compute the bitwise convergence of the population.

3. If the convergence is greater than a given threshold, replace all but the best two

members of the population with randomly generated and evaluated members.
4. Probabilistically select n - 2 members from the population based on fitness.

5. Randomly order the n - 2 selected individuals and form pairs. These pairs are

parents.

6. Perform one-point crossover on each set of parents at a random string position

to form children.
7. Replace the n - 2 worst members of the population with the children.

8. Probabilistically perform mutation on the children.

For selection, the restarted GA used Stochastic Universal Sampling as de-
scribed by Baker [76].
The algorithm is modified to include imnﬁgration by the addition of the fol-

lowing step:

1.5. Generate and evaluate m random members and replace the m worst mem-

bers of the population with the m random members.

111

Only n -2 members are selected each generation to insure survival of the best

two performing members.

4.3.5 Test Suite of Functions

As stated earlier, immigration imposes a tradeoff in a GA. The added structure
introduced by the random members occurs at the cost of evaluating each random
member immigrated. Given this tra.deoff, the type of functions where -imﬁﬁgration
should achieve a favorable balance between these factors and increase performance
of the steady state GA are those functions with local optima that are difficult to
avoid or escape. Functions of this nature require the steady state GA to be more
circumspect while converging, and therefore may require sampling more structure.
Immigration introduces the needed structure that may have been discarded from the
population. By increasing the structure available to the GA . ‘mmigration should
reduce the chance of converging at a local optimum, and thereby reduce the overall
number of function evaluations by the steady state GA.

On the other hand, on functions that are unimodal, a steady state GA with
immigration should perform poorly. A steady state GA operating on a unimodal
function has a reduced chance of losing the structure necessary to find the global
optimum. Adding the immigration operator introduces redundant structure at the
cost of function evaluations. In this case, the tradeoff between added structure vs.
added evaluations does not achieve a favorable balance, since the added structure
would already be in the population. Therefore, a steady state GA with immigra-
tion should increase the number of function evaluations required to find the global
optimum of a unimodal function.

" It is difficult to predict the effect of immigration on a restarted GA. Like the
steady state GA, immigration should allow a small population GA to sample more

structure, and help prevent the GA from settling into a local optimum from which it

112

is difficult to escape. This should reduce the number of function evaluations required
by the GA for multimodal functions.

For unimodal functions, it is reasonable to believe that the small population
must converge a number of times before the global optimum of the function is
found. Each convergence imports a host of new random members. It is difficult to.
predict whether importing random members after convergence is more efficient than

- immigrating random members during convergence, since both techniques maintain
a high rate of schema processing.

As described in section 4.1, the shape of the ARM energy function is highly
nonlinear, and possesses many local minima. Since it is difficult to describe the
shape of the ARM function for a given asserted effect, a more understandable set of
functions have been created to point out the types of energy surfaces that the GA
might expect. The use of these functions also demonstrates that the immigration
operator is applicable to functions other than the energy of the ARM model.

The experimental suite consists of a set of six functions that have different
types of local and global optima. The suite was created to examine the ability of
a GA to escape or avoid difficult local optima. This is reflected in the number of
function evaluations required to find the global optimum of the function. By using
a suite of this nature, one can determine the type of problems that prove difficult
for a GA to solve, and show how the immigration operator affects performance.

Each of the functions is defined on a 20 bit binary string. The optimum cost
value for each function is 0.0, which is the minimum value of the function. The

functions are described as follows:

1. F1 (ODDEVEN): The purpose of this function is determine how well 2 GA
can combine low-order, high-performing schemata into a structure where good
local performance may lead to poor global fitness. In terms of the ARM, this

is similar to subsets of agent symbols that work well together, but work poorly

113

when combined into larger sets due to higher order relationships.

A sliding window of length 4 is moved one bit at a time over a twenty bit
member. The maximum cost is assigned 17.0. Each time the pattern 0101
or 1010 appeared in the window, 1.0 is subtracted from the cost. A pattern
of alternating 1’s and 0’s, 01010101010101010101 or its complement produces
the minimum cost of 0.0. A string of all 1's or all 0’s has the maximum cost

of 17.0.

For example, the string 01010111111111111111 has a functional value of 17.0
- 3.0 = 14.0 since there are three 4 bit strings of alternating patterns. The
first one starts at position 0 and is 0101, the second begins at position 1 and

is 1010 and the third begins at position 2 and is 0101.

This function contains local minima (optima) that may trap the GA. Consider
the member 01010101011010101010. This member has a cost of 17.0 - 14.0
= 3.0 that would indicate that it is a near optimal member; however, the
member must actually invert the values of 10 consecutive bits in order to
achieve the the optimal configuration, which is a large Hamming distance.
Such large Hamming distance disturbances are difficult to create through the
mutation operator without destroying the good structure in the population.
Therefore, if the population converged around this pattern or a similar one,
the GA would be trapped in a local optimum. The example demonstrates that
the combination of low-order, high-performing building blocks may produce a

string that is far from the global optimum.

. F2 (DECEPT1): The purpose of this function is to determine the performance
of a GA on a difficult, two bit deceptive problem. For the ARM, this function
determines if a GA can escape a robotic action that forms a good local mini-

mum in the energy function, to find a very different robotic action that is the

114

optimal solution.

The 20 bit member represents four non-overlapping fields, each of length 5 bits.
The maximum cost is assigned 28.0. For each five bit field, 1.2 is subtracted
from the maximum cost for each bit in the field that is a 1. However, if all five
bits in the field are 0, 7.0 is subtracted from the maximum cost. Therefore,
a field of five 1 bits subtracts 6.0 from the maximum cost, so the member
.11111111111111111111 has a cost of 4.0. The rninin';um cost member is all 0’s,

"and has a cost of 0.0.

For example, the member 00000111111010100001 subtracts 7.0 for the maxi-
mum cost for bits 0-4, 6.0 for bits 5-9, 3.6 for bits 10-14 and 1.2 for bits 15-20,
for a total cost of 28.0 - 17.8 = 10.2

This function falls within the class of GA-hard problems [71], since it contains
low-order deceptive schemata. These indicate that the function minimum is a
string of all 1 bits when it is really a string of all 0 bits. In terms of average

member fitness, this function can be described as:
o f(* - *0%. %) < f(*.. *1*...)
o £(*-%00%- - *) < f(=.. ®O1%. . *), f(*- - %10% - %) < (5. ..*11%.. %)
o Also, f(*---*000~. - %) < f(*..-*111%...%)
. F3 (DECEPT?2): The purpose of this function is to determine the performance

of a GA on a simpler, one bit deceptive problem. For the ARM, the same

comparison is valid.

A sliding window of length 4 is moved one bit at a time over the twenty bit
member. The maximum cost is assigned 51.0. At a given window location,
each 1 bit in the window subtracts 0.5 from the maximum value. If all bits in

the window are 0, 3.0 is subtracted from the maximum value. The minimum

115

cost of the function is 0.0 and occurs when each bit in the individual is 0.
When each bit in the individual is 1, the cost is 17.0. For example, the string
11110000111111111111 would have a cost of 22.0.

This function also contains low-order deceptive schemata, that indicate the
function minimum is a string of all 1 bits, when it is really a string of all 0

bits. In terms of average member fitness, this function can be described as:

o f(*..20%.. %) < f(*.. *1*...x)

o f(*---*00%...%) < f(*.. .*11%...%)

. F4 (MIRROR): The purpose of this function is to examine the ability of a GA
to process high-performing, high-order schemata while maintaining the consis-
tency of low-order schemata. The cost function is designed to be much more
sensitive to the high-order schemata than the low-order schemata. For the
ARM, this function tests if the GA can throw away small subsets of symbols

in a robotic action that perform well, to find ones that perform better.

A maximum cost of 39.0 is assigned. Bit 19 of the member is made coatiguous
to bit 0 for wrap around. For each bit that is the same as its rightmost
neighbor, 0.5 is subtracted from the cost. Also, if bit 7 (0 < i < 9) and bit i +
10 differ, 3.0 is subtracted from the cost (e.g., if bit 1 is different from bit 11,
3.0 is subtracted, if bit 2 is different from bit 12, 3.0 is subtracted, etc.). The
minimum cost of 0.0 occurs when a string of ten 1’s is followed by a string of
ten 0’s. Since wrap around is allowed, the pattern can begin anywhere in the

member. A string of 1's or all 0’s has a cost of 20.0

For example, 00001111111111000000 has cost 0.0 since ten 1’s are followed by
ten 0’s. The string 10101010101010101010 has a cost of 9.0.

This function should prove difficult for the GA to solve. Consider the member
00011100001110001111. It has a cost of 2.0 yet it is Hamming distance 6 away

116

from the optimal solution. This forms a local optimum from which it is very

difficult to escape.

For this function, the major reduction in cost occurs when high-order schemata
are consistent, with a slight reduction when low-order schemata are consistent.
As shown in the example, this can lead to members that have strong high-
order consistency, but poor low-order consistency. This creates local minima

that prove difficult for a GA to avoid or escape.

. F5 (EIGHTAWAY): This function tests a GA’s ability to assemble schemata

that are of different order. The function is more sensitive to higher-order
schemata than it is to low-order schemata. For the ARM, this is similar to

the F4, but is more difficult.

A maximum cost of 41.0 is assigned. For each bit i in the member different

from bit ¢ + 1, subtract 0.5 from the cost. Also, the cost is reduced as follows.
(a) For (0 <1< 4)
i. Let m=1¢,letn=m + 8
ii. Repeat
A. If bit m is different than bit n subtract 2.0 from the cost.
B.Letm=n.letn=m+ 8
C.IHn>20,n=n-20
ii. Untiln = ¢
The minimum of this function occurs at 01011010101001010101 or its comple-
ment. A member of all 0’s or all 1’s has the maximum value of 41.0

This function forces schema consistency for defining lengths 4, 8, 12 and 16.
The function is very sensitive to these high-order building blocks. Consistency

should also be maintained for low-order schemata, but must be violated in

117

some instances in order to achieve the optimal string. The local optima this

function possesses are similar in nature to those possessed by the function F4¢

(MIRROR).

6. FG (ONEMAX): This is the same bit counting function described by Ackley
[90] and is unimodal. For the ARM, this tests the ability of the GA to search

a very simple, unimodal energy function.

A maximum cost is assigned 20.0. Each 1 bit subtracts 1.0 from the cost. The

minimum cost occurs when all 20 bits are 1 and has a cost of 0.0.

4.3.6 Description of Experiments

The focus of the experiments is to determine the effect of immigration in a
Genetic Algorithm on the test suite of functions. As stated earlier, the immigration
operator should increase the exploration of a GA without significantly decreasing
the exploitation of the GA.

For the steady state GA, the increased exploration should prevent the GA from
prematurely converging and becoming trapped in a local minima. This fact should
be reflected in the number of GA trials that require an excessively long time to find
the function optimum. Also, since the population size is maintained, the GA should
have the exploration power of a larger population with the exploitation of a smaller
one. This would be reflected in the average number of function evaluations required
to find the global optimum. Therefore, for the steady state GA, two performance

criteria are examined.

1. The average number of evaluations required to find the function optimum is

the first criteria.

2. The number of trials that required an excessive number of evaluations to find

the function optimum is the second criteria. These trials are called “outliers.”

118

For the restarted GA, the inherent reinitialization process should prevent the
population from becoming trapped in a local optimum for many generations. Be-
coming trapped in a local optima leads to an excessive number of evaluations, or
outliers. Since the restarted GA should prevent this, immigration should not sig:
nificantly reduce the number of outliers for an experiment. However, immigration
does increase the amount of exploration performed by the GA while the population
is converging. The increased exploration may allow the GA to be more circumspect
and avoid local minima. Avoiding local minima should decrease function evalua-
tions. Therefore, if immigration aids this algorithm, it would be reflected in the

average number of function evaluations required to find the optimum.

4.3.6.1 Design of the steady state GA experiment

Since exploration vs. exploitation is the focus of this work, each function is
evaluated over a range of population sizes. The smallest population size is 30. For
each function, the population sizes are repeatedly incremented by 10 members until
the GA performs worse than with the previous population size.

The fitness function first ranks each member of the size n population. Then,

a fitness value is assigned to each member s using the equation

Fitness(s) = e:’p(3w

) (4.6)

n

The above fitness assignment curve maps the best member to fitness value 20.0 and
the worst member to fitness value 1.0. Using these exponential constants, the best 50
percent of the population has a ratio of 4.5:1 in fitness values. An exponential curve
is used to accentuate better performing members while assigning similar fitnesses to
poor performers. The curve also prevents high-performing individuals from taking
over the population entirely, so the fitness function is not unduly sensitive to cost

values. Davis [91] has also used ranked exponential fitness assignment.

119

The immigration rate m (number of random individuals immigrated each gen-
eration) in the experiments ranges from 0 to 4 individuals per generation. Also, a
one-point crossover scheme is used.

The probability of child mutation is fixed at 0.005 mutations/bit. Early ex-

" perimentation determined that the berforma.nce of the steady state GA improved

when members of the population other than the current children were allowed to

mutate. This seemed most important as the population began converging, so a dy-
namic mutation rate as a function of convergence is used. The dynamic population

mutation rate is given by the equation
Mutations/Bit = 0.015(C — 0.5) (4.7)

(where C is the bitwise convergence percentage of the population and ranged from
0.5 to 1.0).

Again, each population member is 20 bits long. Each experiment is assigned
a population size and immigration rate, and is tested with 500 separate GA trials,
each with a unique random population. Each GA trial counts the number of function
evaluations until the global optimum is found. The maximum number of evaluations

allowed per trial is 50000. This is performed on all functions in the test suite.

4.3.6.2 Design of the restarted GA experiment.

For this experiment, the population sizes begin at n = 14. For each function,
the population size is increased by 2 members until the GA performs worse than
with the previous population size.

The fitness function first ranks each member of the size n population. Then,

a fitness value is assigned to each member s using the equation

Fitness(s) = ezp(1.5-7z——r?n—lc-(-ﬂ) (4.8)

n

7

120

which assigns fitness values between 1.0 and 4.5. A smaller exponential constant
(1.5 instead of 3.0) is chosen for this small population GA. This provides most.
of the population members with some chance to compete. However, this fitness
scheme does enforce a 4.5:1 fitness ratio between the best and worst members of the
population.

The immigration rate m in the experiments ranges from 0 to 4 individuals per
generation. Also, a one-point crossover scheme is used. The probability of mutation
is set at 0.005 mutations/bit.

For functions F1 - F5, the threshold convergence ratio is set 0.85. In other
words, when the population is 85 percent bitwise converged, the two best members
are kept and random members fill the remainder of the population. This conver-
gence ratio was selected after some experimentation with values of 0.75 and 0.95. In
general, for functions F1 - F3, a convergence value of 0.75 forced the GA to import
random members before good structure had been developed, and led to an increased
number of function evaluations. A convergence value of 0.95 often required conver-
gence of members to a local optimum which was already present in the population.
This also led to an excessive number of function evaluations.

For F6, a unimodal function, a convergence ratio of 0.95 provides the best
performance. For this function, the population could not settle into a local optimum
and could continue useful schema processing to a higher degree-of convergence.

As with the steady state GA, each population member is 20 bits long. The

same experimental constraints are also present.

4.3.7 Experimental Results

- The experiments provided a measure of difficulty for each of the six functions
in the suite. Figures 4.6 - 4.11 present a comparison of the performance of the steady

state GA with immigration (dashed bars) and without immigration (solid bars) on

121

functions F1 - F6 of the test suite. Figures 4.12 - 4.17 present a comparison of
the performance of the restarted GA. These plots reflect the average number of
evaluations required by the GA to find the optimum value of each function. The
. number of immigrations per generation that produced these results is labeled in
each figure.

Based on the experimental results, both GA’s easily solved function F6 (ONE-
MAX) which is a unimodal function. This was to be ekpected. Functions F1 (ODD-
EVEN) and F3 (DECEPT2) proved only a little more difficult to the GA’s. This |
indicates that the GA does a good job assembling low-order optimal schemata into
an optimal string. It also indicates that the GA can overcome some deception in its
search.

Function F4 (MIRROR) was next in level of difficulty, followed at a distance by
F5 (EIGHTAWAY). Both of these functions required the development of high-order
schemata and the consistency of low-order building blocks. The difficulty of the
GA in achieving the global optimum of each function may be due to the crossover
operation used. The strength of one-point crossover is its ability to assemble low-
order building blocks into optimal strings. High-order schemata have a greater
chance of being destroyed, as was demonstrated by these experiments. Perhaps the
performance of the GA’s would improve using a crossover mechanism that is less
positionally biased.

Function F2 (DECEPT1), a two-bit deceptive function, proved extremely dif-
ficult to both GA’s. When compared to function F3, a one-bit deceptive function,
one can see that increased deception has a profound effect on the optimization ca-
pabilities of a GA.

- The next sections describe in detail the experimental results, and ‘examine

effects of immigration on a Genetic Algorithm.

122

Evals x 109
!] | lmm 0
120 ar————
|) ‘ lmm 2
1.10

1.00

0.80
0.2

050
0.40
030
020
0.10

| | } | pm
16.00 1800 2000 200

Figure 4.6: F1 - Average Number of Evaluations using Steady State GA

Evals x 10° ,
! mmo

3

1200
11.00
10.00
9.00
800
7.00
6.00
5.00
4.00
oo
200
1.00
000

l
|
|

n ! I | Popsize
1600 180 2000 200

Figure 4.7: F2 - Average Number of Evaluations using Steady State GA

123

Evals z 10°

120
1.10
1.00
0.50
0.80

'0.70

050
0.40
030 = =

0.10
0.00

| . ! | pm
14.00 16.00 18.00 2000

Figure 4.8: F3 - Average Number of Evaluations using Steady State GA
Evalsx 10°

J

300

230

1.00

‘ ' Popeiz
15.00 2000

Figure 4.9: F4 - Average Number of Evaluations using Steady State GA

124

Evaisz 108

L

' | Popsizz
15.00 20.00

Figure 4.10: F5 . Average Number of Evaluations using Steady State GA

]

! I i
14.00 16.00 1800 20.00

Figure 4.11: F6 - Average Number of Evaluations using Steady State GA

Popaize

Evals z 10°
630 am 0
6.00 -
550
5.00
450
4.00
3s0
3.00
250

130
1.00
050
0..C

. | i .
Popsize
40.00 60.00 80.00

Figure 4.12: F1 . Average Number of Evaluations using Restarted GA

Evalsx 10°
26.00
24.00
.00
20.00 - —_—
18.00
16.00
14.00
1200
10.00

Jy

8.00

6.00

400

200

0.00 ‘ |]
Popsize

60.00 80.00
Figure 4.13: F2 . Average Number of Evaluations using Restarted GA

126

Evaisx 105
i
400 -
g | |
B E—
50
200
150
1.00
050
00 | l I popeie
40.00 60.00 80.00
Figure 4.14: F3. Average Number of Evaluations using Restarted GA
Evalsz 10°
> — | &=
4.00
‘o |
=1
250
200
150
1.00
0.50
0.0 | | U popsize
40.00 60.00 80.00

Figure 4.13: F4 . Average Number of Evaluations using Restarted GA

127

Evals 2 105
200 ' | 1o O
lmm 3

7.00

5.00

4.00

200

1.00

i | | Popsize
40.00 60.00 80.00

Figure ¢.16: FS - Average Number of Zvaluations using Restarted GA
Evals

600.00
55000
500.00
45000

JL

| Iilmlllllﬁll

M ||

:

i

:

! III,IIIIIIIIII

;

] | | | Popsize
30.00 4000 50.00 60.00

Figure 4.17: F6 - Average Number of Evaluations using Restarted GA

128

4.3.7.1 Steady state GA

The smallest average number of evaluations for functions F1 - F5 occurred
when immigration was present. This was expected, since these functions contain
many local optima. For function F6, the steady state GA without immigration
outperformed the modified GA. Again, this was predicted, since F6 is a unimodal
function.

It is important to note that these figures provide the best results of the steady
state GA with immigration. The immigration rate that performed best for a func-
tion is called the “optimal” immigration rate for that function. In general, all
immigration rates (greater than 0) up to and including the optimal rate resulted in
an improvement in performance over the non-modified GA.

For function F1, (Figure 4.6) the GA without immigration produced the best
results at a population size of 80 and required an average of 1688 function evaluations
to find the optimum solution. With 2 immigrations per generation at a population
size of 60, the GA required only 1352 function evaluations. Therefore, the GA
without immigration resulted in a 24.8 percent increase in search time over the GA
with immigration. In fact for each function F1 - F5, immigration resulted in a
reduction in the number of function evaluations.

Examining Figures 4.6 - 4.11, it is interesting to note that for most of these
functions, the reduction in function evaluations using immigration is largest for small
populations, and decreases as the population size increases. This indicates that the
smaller populations require the added exploration that immigration provides, while
larger populations possess sufficient exploration power.

Also, in most trials shown in these figures, the GA with immigration performed
be;.ter than a GA with 10 more population members without immigration. This
provides more evidence that immigration allows the GA to search the space of a

larger population.

129

Further, in F1, F3 and F35 the optimum with immigration occurs in smaller
populations than the optimum without immigration. This lends credence to the
theory that immigration allows small populations to retain their selection pressure.

This is demonstrated further in Figures 4.18 - 4.29.

| The histograms in Figures 4.18A - 4.29 present the results of 500 GA trials on
each function with and without immigration. The figures present the number of
trials (Y axis) that require a given number of function evaluations (X axis) to. find
the global optimum for a range of p‘opula.tion sizes. The different population sizes
are represented by solid, dashed and dotted lines. Figures 4.18, 4.20, 4.22, 4.24,
4.26, and 4.28 show results of the GA without immigration. Figures 4.19, 4.21,
4.23, 4.23, 4.27, and 4.29 show the results with optimal immigration. For example,
in Figure 4.18, the GA without immigration and a population size of 40 (solid line)
found the optimal solution in 200 function evaluations (X axis) in 129 out of its 500
separate trials for function F1.

To reduce the length of the X axis, all trials that require an excessive number
of function evaluations are grouped together at the last point on the X axis. For
example, in Figure 4.18, the GA with 0 immigrations and a population size of 40
had 78 points that required more than 5000 evaluations to find the optimal solution.
These points are referred to as “outliers.”

Examining the results of the GA without immigration, one can see that the
peak generally shifts to the right with increasing population size. This demonstrates
the decrease in selection pressure, which inhibits the GA from finding easy solutions
quickly. From these figures, one also notes that increasing population size reduces
the number of outliers. This indicates that an increase in population size increases
the;exploration power of the GA.

Let us now compare the GA without immigration to the GA with immigration.

As shown in Figures 4.18 and 4.19, the GA with immigration has significantly fewer

130

outliers than the GA without immigration This is an example of how immigration
can increase exploration. Further, the peaks of Figure 4.19 occur at about the same
number of function evaluations (X axis) as the peaks in Figure 4.18. As discussed
above, if selection pressure was decreased by immigration, we could expect the peaks
in Figure 4.19 to be shifted right of the peaks in Figure 4.18. This is not the case, so
the GA with immigration maintains selection pressure and ezploitation power.

Figures 4.20 - 4.23 present similar results. Further, for these functions the
magnitude of the peaks actually increased with immigration. This is due to the
reduction in the number of function evaluations for trials to the right of the peaks,
another indication of increased exploration.

Figures 4.24 - 4.27 the peaks occurring near the same X axis location, but
again show that immigration does not always eradicate all the outliers for various
population sizes. It does show, however, that immigration still reduces the number
of outlying trials. Since these outliers contribute heavily to the average number
of function evaluations required to find the optimum, it is clear that eliminating
outliers reduces this value.

Figures 4.28 and 4.29 show the result of function F6 with no immigrations
and with 1 immigration per generation. These experiments verified our prediction
that a steady state GA with immugration would perform poorly on a unimodal
function. As shown by the plot, immigration shifted the peak to the right and
reduced it. The average number of evaluations rose from 358 (without immigration)
to 461 (with immigration). In this case. immigration did not achieve the balance
between added evaluations and missing population structure. This indicates that
immigration is not necessary for functions in which the structure can be selected
reﬁs.bly and propagated easily through the population of a steady state GA.

Overall, these experiments show that a population size between 60 and 70

131

members performs best for the steady state GA described above. To improve per-
formance, an immigration rate of 2 or 3 members per generation should be used on

functions that contain difficult local optima.

4.3.7.2 Restarted CA

As with the steady state GA, the smallest average number of evaluations for
functions F1 - F5 occurred when immigration was present in the restarted GA. This
was predicted, since these functions contain many local optima.

However, for function F6, the unimodal function, the restarted GA with im-
migration outperformed the GA without immigration. This indicates that adding
random members during convergence improves the efficiency of a restarted GA over
both unimodal and mutimodal functions. This phenomena is quite interesting, and
should be studied in further detail.

Again, these figures provide the best results of the restarted GA with immi-
gration. In generai, all immigration rates (greater than 0) up to and including the
optimal rate resulted in an improvement in performance over the non-modified GA.

These experiments show that a population size between 16 and 20 members
performs best for the restarted GA described above. To improve performance, an
immigration rate of 2 or 3 members per generation should be used on functions
that contain difficult local optima. Searching unimodal functions is more efficient

at smaller populations, and can also benefit from the effects of immigration.

4.3.7.3 Immigration: Conclusions and recommendations

This study has examined the tradeoff between exploration and exploitation
in Genetic Algorithms. It conjectured that a GA can increase explora.tibn power
while maintaining selection pressure by replacing poor performing individuals in a

population with random members.

132

140.00

100.00 [:

ﬁ\
80.00 +r
. ! [}
R
HEEN I B

40.00

| "]

"f '—’
g e
TE

20.00

0.00 ~] > |
—Zrals x 105

Ccarences

140.00
Pop 80

100.00 l 1.

5
| r
] 3
.-
L -
—

2.0 .': ! \ *

0.00 .
—Evais x 10°

Figure 4.19: F1 - 2 Immigrations Per Generation

133

Occureaces
Fop.
ey | —|&w
$0.00 $op 56
80.00 | L
70.00 ' ’
- —
NEV=EAN [
A7 YA A l l

3000 e =
L r-\"\:' | i/
aso R W
o, %

L l Evals 2 10°

0.00 20.00 4000

Figure 4.20: F2 . 0 Immigrations Per Generation

Ocaurences
10000 ;: ?‘;
90.00 Popda”
i)
m kY
30.00 T \
10.00
. \ ’}#
Zrals x 10°

0.00 20.00 40.00
Figure 421: F2 . 3 Immigrations Per Generation

134

Pop 30

Pop 50

Pop7°

w L] 0
sa00 LU ™ |
":r" 'Q,.‘ ,
2000 (— AT
N A 5

0.00

200

3.00

4.00

als x 10°

Figure 422: F3.90 Immigrations Per Generation

Occarences

EEEBBEEEEEE

B

B

1.00

rals x 10°

Figure 4.23: F3.2 Immigrations Per Generation

100.00

“Evais x 103

0.00 200 4.00 6.00

Figure 4.24: F4 - 0 Immigrations Per Generation

Occurences
oo il
90.00 | Pop 8~
80.00 ¢
4
40.00 | ’ ! "3.“.
Vil S
30.00 —f= ry
el Y
10.00 | ‘: L\A‘ -~ l
: ' LEv:l.s 2108
0.00 2.00 400 600

Figure 4.25: F4 - 1 Immigrations Per Generation

135

et/

136

100.00

£.00
70.00
60.00 L

»n

0o L
a0 [

2000 \A -
10.00 - A

|
T E——
0.00 2.00 4.00 6.00 8.00

Figure 4.26: F5 - 0 Immigrations Per Generation

T Pop 30
100.00 e
Pop 0~

—valsx 103
400 600 800

Figure 4.27: F5.3 Immigrations Per Generation

137

Pop 30

Pop 50

Poped”

Evals x 103

Y X3
N PR ety 4 2L

........

150

-1.00

0.00

8: F6 - 0 Immigrations Per Generati

)

- ,
bigure 4.2

- -
2 ww .
g[8 ip :
ﬁ.
——1-(-
B I e =

Y st B .::.Q\
- 0&.0. s ool

- s 8

L =

200.00
180.00
160.00
140.00
120.00
100.00

050 1.00 150

0.00

Figure 4.29: F6 - | Immigrations Per Generation

138

The results of the experimentation show that immigration improves the per-
formance of steady state GA’s when optimizing functions that contain local optima
that are difficult to avoid or escape. The experiments also show. that immigration
improves performance for a spectrum of functions using a restarted GA.

Although these experiments are completed, there are several recommendations
for future work. Testing immigration on a generational GA would be the next logical
step of this research. Also, a further examination of immigration versus restart would
be in order. Finally, testing functions F4 (MIRROR) and F5 (EIGHTAWAY) using
a less positionally biased crossover operator, such as uniform crossover, would prove
interesting.

In conclusion, this study demonstrates that immigration is a viable operator

for improving the efficiency of GA’s on difficult optimization problems.

4.4 Convergence of a GA using Immigration

In previous sections, the addition of the immigration operator to a Genetic
Algorithm was shown to reduce the search time required to find the global optimum
for a given class of functions. This section develops some theoretical underpinnings
for the immigration operator, and proves that a GA enhanced with immigration will
converge in probability to the global optimum of a given function.

One of the main problems of the Genetic Algorithm is premature convergence.
If the entire GA population converges to the value of a single member before the
global optimum is found, the selection and crossover operations will never be able to
create the optimal member. In this case, only the mutation operator can bring new
structure to the population; however, since mutation changes just a few individual
bits, it only explores regions local to the converged population. If the global optimum
is a large Hamming distance from where the population has converged, there is

little chance that mutation will aid in discovering it. In fact, there is no proof of

139

convergence of a GA to the global optimum of a given function.

Convergence, in the GA sense, denotes the degree of uniformity of the members
of the population. Convergence to a global optimum, in an optimization sense,
means that the sequence of “best” points generated by the search algorithm tends
to the opt{mal solution. For the rest of this section, “convergence” will take on the
latter of these definitions.

By embedding the immigration operator into the GA, we can develop a proof
that shows that the modified GA will converge in probability to the optimal function
value. The initial idea for the proof is based on the concept of Spacer Steps, as
presented by Luenberger [65]. The Spacer Step technique states that an algorithm
that is known to converge to the global optimum of a cost function can be combined
with another algorithm, which may not converge to the optimum, and the resulting
algorithm will converge to the global optimum.

To develop the proof, we will first present an algorithm that converges in prob-
ability to the global optimum of a function. Then, we will illustrate the methodology
of combining this algorithm with the GA using Spacer Steps, and relate this to im-
migration. The use of the Spacer Step technique serves to introduce the actual proof
of convergence, which is based on a probabilistic argument.

First, let us consider a search algorithm called Random Search. Given a cost
function Q, a state vector X; = (21,23, -+, 2Za) at iteration z, and a prespecified

value ¢, perform the following.

Random Search
_1. Generate a random vector X (rand)
2. If Q(X(28d) < Q(X;) - ¢ then set Xjy1 = X(Fa2d),

3. Else, set Xi.1 = X;.

140

This Random Search algorithm has been shown to converge in probability to the
global minimum (optimum) of a cost function, Q [66, 67).

The technique of Spacer Steps is described by Luenberger as follows [63].

Suppose B is an algorithm which together with the descent function Q
and a solution set ', converges globally to the optimum of Q. Let us
define another algorithm C by C(X) = {Y : Q(Y) < @(X)}. In other
words, C applied to X can give any point so long as it does not increase
the value of Q. Then, B represents the spacer step in the algorithm CB

and the overall algorithm CB converges globally to the optimum of Q.

In the above description, B is the Random Search algorithm, which is known
to converge in probability to the optimum of a function, and C is the Genetic
Algorithm. To combine Random Search and the Genetic Algorithm, an operator
must be developed that adds random members to the GA search. This operator has
been developed and is called immigration. The only other constraint is that the GA
cannot remove the current best performing member from the population. Hence,
the GA modified with immigration as presented in earlier sections forms the CB
algorithm.

The Spacer Step technique serves to illustrate the effect of adding Random
Search to the GA in the form of an immigration operator. However, the Spacer
Step technique has not been explicitly proven for probabilistic algorithms. Since
Random Search falls into the class of probabilistic techniques, to be mathematically
precise, we must construct another proof. This proof is similar to the one described
by Matyas [66].

- First, let us present the Random Search algorithm‘, combined with another
search algorithm, A. The combined algorithm searches over a discrete domain of

binary vectors.

141

Combined algorithm A and Random Search
Given a cost function Q, a state vector X; = (z1,23,---,2,) at iteration i,

where z,¢{0,1}, repeat the following.

1. Generate a random vector X(rand)
2. If Q(Xand)) « Q(X;) then set X;,; = X(Fand),
3. Else, set X;,; = X|.

4. Generate a set of search points, {X(4)} from algorithm A and select a member,

X(A) | of the set such that VX ¢ {X(A)}, Q(XA)) < Q(X)
5. If Q(XAY) < Q(X;41) then set X; 2 = XA,
6. Else, set X;,.2 = X;,1.
7. If Q(Xj42) is not optimal, set i =i + 2 and goto 1.

Tzi: algorithm will converge in probability to the global minimum (optimum)
of the cost function @Q., i.e the sequence {Xy,X;, --,Xg} as ¥ — co will tend to

the optimal value of X over Q(-), which will be referred to as X°Pt

Theorem 4.1. The sequence {Xg, X, --,Xy} provided by the combined algo-
rithm A and Random Search will tend to X°P* as k — co.
Proof:

Let us first define the set G{k] as:

Gk = {X:Q(X) <k} . 49

-~

This is the set of all points that have a cost less than k. The set G{k] depends on
the form of the function Q. We assume that Q is regular, in the sense that G[k] has

the following property:

Property A. (Vk)(k > Q(X°P*), G[k] is a non-empty set.

We must show that P(Xy # X°Pt) — 0 as k — oo.

1.

Let X ¢ {0,1}" This is the domain of the the combined search algorithm.

Let f{rand)(X) be the proba.bility density function of the discrete random vari-
able X generating X(ra2d)| We know that Ix f(""‘d)(X) = 1. We guarantee
that (VX)firend)(X) > 0.

Let f; (,fl) (X) be the probability density fuhction of the discrete random variable

X generating X4) at iteration i + 1. We know.that ¥x f (A)(X) =1.

Let us define a succesful step from state X at iteration ¢ as a step that generates
X such that Q(X;) < Q(X). In other words, it is a step that reduces the cost

function, Q.

The probability Pg,,,(X) of a successful step from state X at iteration i or
t + 1 can be expressed as:

Po . (X)= X (fr(X)+ f(X) -
G[Q(X)]

> T (S x) AN (4.10)

GlR(X)] Gle(X))
By Property A, we know that G{Q(X)] is non-empty if X # X°Pt and since
(VX)(V¥i) f*"9)(X) > 0, there must exist an a > 0 such that Py, (X) > o

Let us set

m = 2", (4.11)
In the combined search algorithm, if at least m steps are successful, it is
guaranteed that we have found the point X°Pt. This is true if no step in
the combined algorithm increases the cost of the current best member from
one iteration to the next. Let us define s; as the number of successful steps

occuring up to and including step k.

143

8. Consequently the probability that X) 7 X°P* is less than the probability that
the number of successful steps does not exceed m, i.e.,
P(Xy # X°P%) < P(s; < m) (4.12)
9. Since Py,,,(X) 2 a,' for X £ X°Pt we can bound this by a binomial proba-
bility distribution
m [k . i
P(si<m) <) a'(l —a)* (4.13)
=0 1 . ‘
where k is the number of steps taken. Further, when & > 2m and a < 0.5,
m [k . . k
S a(l-—a)f < (m+1) (1-a)f=
=0 \ 2 m
—k(k-1)(k-2)- - (k-m— N1-a)< ——k (1-a) (4.14)
10. Consequently,
+1,.
P(X) # X°Pt) < ﬁnrk (1-a) (4.15)
11. For any a > 0, it is clear that:
Jim £™(1 - a)f =0 (4.16)
12. Therefore, P(Xy # X°Pt) — 0 as k — oo.
Q.E.D.

Of course, the algorithm A is the Genetic Algorithm, under the guarantee

that is does not remove the best current member at any step. It is easy to see

that this proof can be extended to situations in which the immigration step occurs

infrequently.

144

4.5 Representation of Nodes for Genetic Optimization

The Genetic Algorithm has been shown to be adept at optimizing difficult
cost functions, such as the energy function for the ARM. Each member of the GA
is represented by a-string of binary values. For the ARM, the binary member of the
GA population must map to the output nodes of the network, because the purposé of
associative recall is to find the correct set of asserted output nodes that minimizes
the energy of the network for the given asserted input nodes. In other words,
the population maintained by the GA represents different configurations of output
nodes, and the fitness of each member reflects the energy for that configuration,
when asserted on the network.

The issue of representation involves the mapping of a member of the GA
population onto the output nodes of the ARM. By choosing the appropriate rep-
resentation for the output nodes, it is possible to reduce the search time of the
GA.

For example, Caruana and Schaffer [92] find that using a Gray code represen-
tation for integer or real population members outperforms straight binary coding in
numerical optimization problems. The use of a Gray code allows nearby integer or
real search points to have similar representations as members of the GA population.
The similar representations are characterized by having small Hamming distances.
Under binary coding, nearby search points may have vastly different codings in the
GA population. This prevents the GA from developing a sense of “continuity” in
the domain of the problem and hinders local search. Hollstein [93] also advocates
the use of Gray encodings for such problems.

Goldberg [71] offers two basic principles for choosing a GA representatxon
These are the Principle of Meaningful Building Blocks and the Principle of Minimal
Alphabets.

The Principle of Meaningful Building Blocks is stated as follows.

145

The user should select a coding so that short, low-order
schemata are relevant to the underlying problem and relatively unrelated

to schemata over other fixed positions.

This principle is based on the one-point crossover operation, which has a strong
positional bias towards maintaining short, low-order building blocks.

The Principle of Minimal Alphabets is stated as follows.

The user should select the smallest alphabet that permits a natural ex-

pression of the problem.

This principle, Goldberg explains, is based on the idea that smaller alphabets provide
greater numbers of schemata per bit of information. The lower limit of alphabets is
the binary representation used in most Genetic Algorithms.

With this information, we can develop a suitable GA representation for output
nodes of the ARM.

Recall from Chapter 3 that the structure of the specific rules provided to the
ARM is

ACTOR ACTION OBJ, OBJ; :-- OBJ, —
OBJ, STATE OBJ,

The first part of the rule is called the robotic action. The second part of the
rule is the effect. The ARM is designed such that it is provided with a desired effect
as input and recalls a robotic action as output. Therefore, the GA must represent

the nodes corresponding to

ACTOR ACTION OBJ, OBJ; --- OBJn

Based on the design of the ARM, only one ACTOR node, one ACTION node,
and one of each O BJ, node can be asserted together, to maintain the structure of the

rule grammar. This is a relatively sparse representation, given the number of output

146

nodes in the network. If each node was directly mapped to a single bit in each GA
member, and each output level was n nodes long, each member would have length
equivalent to the number of output nodes in the ARM, which is n(m + 2), leading
to a search space of 2*(m+2) points. Further, since the representation allows only
one symbol to be asserted on each level of the ARM, most of the GA search would
be spent removing population members (created through crossover and mutation)
that violate this constraint.)

A better representation is to binary encode the symbols. Each output level of
n nodes requires at least |log,n] +1 bits to represent the asserted node at that level.
The size of a population member is (|{logsn] + 1)(m + 2) bits under this scheme,
which is a large reduction in the search space.

The representation still suffers, because the symbols possess no “semantic”
information. For example, in [92], Gray coding is shown to be superior to binary
coding because the Gray representation explicitly encodes the concept of domain
continuity into each GA member. In other words, members that are near in a
Hamming distance sense perform similarly on the cost function in question. Thus,
the Gray coding adds semantic information to the representation of the search point.

This same idea of coding semantic information into each GA member is at
the crux of the Principle of Meaningful Building Blocks. Similar short, low-order
schemata should possess similar meanings when mapped from the function domain
onto the binary representation. In this case, the function domain is the set of
symbols in the ARM. .

Antoinesse and Keller [86] examine coding higher level representations (similar
to ARM symbols) into binary strings. In their representation of a symbol, each bit
contains semantic information about the symbol, such as the class of objects that
the symbol belongs to, or features of the object that the symbol represents. In

this way, similar objects in the real wocld possess similar representations in the

147

GA domain. Again, if similar symbols possess similar representations, the GA
can effectively search for “features” that perform well on the target function, by
promoting schemata that have these features present. It is important to note that
for the study in [86], as well as for the ARM, the symbol representation is context-
dependent, i.e., depending on the objects in the current world, the representation
changes.

For the ARM system, a similar strategy is adopted. Each bit, or group of
bits in the representation of a symbol encodes some real-world semantic information
about the ACTOR, and O BJs symbols. Semantic information that may be encoded

includes:
1. Major class
2. Minor class

3. Actor significant features (weak vs. strong, dextrous vs. clumsy, human vs.

machine)
4. Object significant features (heavy vs. light, big vs. small, active vs. inert)

It is a little more difficult to determine similar features between actions. How-
ever, actions that produce the same STATE symbol in the rule effect should have
encodings tha: are near in a Hamming distance sense.

An example of the codings for a set of ACTOR nodes is presented in Figure
4.30. Notice that the first bits of the code are devoted to semantic information,
while the last bits contain labels to distinguish between semantically similar actors.
This example demonstrates that similar symbols have meaningful building blocks,

-~

and are nearby, in a Hamming distance sense.

BITS:

148

4-3: 00 = <dex>, 01 = <pos>, 10 = <trans>
2: O=1light, 1 =heavy

ENCODING:

00000: EVA
00100: GDMS
01000: SRMS
01100: ATD
10000: MMU
10100: OMV

0C001: JRMS 00010: FTS 00011: SPDM
00101: MRMS

01001: SSRMS

01101: APS

10001: CETA 10010: MT

10101: ORBITER

Figure 4.30: Encoding of Actor nodes for the GA

149

4.6 Finding Sets of High POE Robotic Actions

The Genetic Algorithm possess the capability of finding a high POE robotic
action given a desired effect. It may be the case, however, that the found robotic
action cannot be used due to other planning constraints, such as resource utilization.
It would be very helpful, therefore, if the GA could produce a set of robotic actions,
each of which possesses a high POE value for the given effect. If one robotic action
could not be used, another would be selected from this set and applied to the
planning problem.

Finding sets of high POE robotic actions requires the GA to find multiple
minima in the energy function of the ARM. Since the GA tends to converge to a
uniform population as the search progress. this requirement seems contradictory to
the nature of the GA. Several researchers, however, have examined the problem of
multiple solutions, or speciation, using a GA.

To increase the diversity of a GA population and allow for speciation, DeJong
[72] introduces a crowding scheme to the GA. In this scheme, existing members are
replaced in the population based on their similarity with other population members.
This replacement occurs when children are generated through crossover. It is shown
that as the search progressed, stable species, or function optima, are found using
this technique.

Goldberg et al. [94, 95] develop a sharing function to promote speciation and
find multiple optima. This research uses the distance between the mapped GA
members to determine the amount of fitness like members should “share.” The
technique follows:

Let
d;; = d(X, Xj) (4.17)
where d is a distance measure and X; and X; are two population members. We

define a sharing function sh with the following three properties.

150

1. 0 < sA(d;;) £ 1 for all d;;.
2. sh(0) = 1.
3. imy, o sh(d;;) = 0.
Many sharing functions can be used, for example

l1- L": d,"(d', are
Sh(d,'j) = (e,,..,.,) 7 A (418)

0, otherwise

where 0,4, and 7 are positive constants. Given a distance metric, a sharing func-
tion, and the fitness of a member 7 by f;, the shared fitness, f! of member i is given
by:
4 f" .
fil==, if m;>0 (4.19)

m;

where
m; = 2 Sh(d,'j) (420)
J

In effect, this algorithm reduces the fitness of each member which is similar to
other members in the population. This allows diversification, because new members
can compete for selection. The research demonstrated the ability to find multiple
peaks in various trigonometric functions.

For the associative recall in the ARM, a technique similar to Goldberg's sharing
function is used to find multiple robotic actions. Since neighboring solutions in the
ARM may each represent high POE robotic actions, only identical members should

be penalized by a reduction in fitness. The penalty method we use is as follows.

1. Create sets of identical members.

~

2. Enumerate the members of each set j by assigning each member an index ¢,

0 <1 < Setsize(j).

3. For each set j do

131

(a) Since al]l members in set j are identical, they possess identical fitness

values. Let f; be the fitness of each member in set ;.

(b) For each member i in set j, assign ¢ a new fitness, f/ = u'f;.

If 4 < 1, the fitnesses of identical members decay exponentially. In other
words, the first member of a set of identical members in the population will have
its assigned fitness value, f;. The second member of the identical set will ha.ve: ufi
as a fitness value. The third member will have p?f; as a fitness value, etc. Of
course, unique members will not have their fitness values altered by this method.
This technique allows diversity and speciation, since it inhibits a uniform population
from occurring.

The case study in Chapter 6 demonstrates the effectiveness of this method at

finding multiple robotic actions for a given effect.

4.7 Contributions and Conclusions

This chapter detailed the associative recall technique for the ARM. The main

contributions of this chapter are as follows.

1. The development of the immigration operator for Genetic Algorithms and
the demonstration that immigration improves the performance of a GA on

functions that possess difficult local optima.

2. The proof that a GA combined with the immigration operator will converge

in probability to the global optimum of a cost function.

The nature of the energy function of the ARM was described, and was shown to
be bighly nonlinear and discrete. Based on this information, the Genetic Algorithm
and Simulated Annealing were tested as possible optimization functions to perform
associative recall on the ARM. Experimental results in this chapter showed that

» the GA can perform as least as well as Simulated Annealing when searching for the

152

minimum energy of a Boltzmann Machine. Based on this study, the GA was chosen
as the associative recall technique for the ARM.

The immigration operator was introduced and examined in terms of the trade-
off between exploration and exploitation in a Genetic Algorithm. A test suite of
functions were defined to examine this tradeoff. The functions were characterized
by difficult local optima. Two types of GAs were tested with and without immi-
gration on the test suite Steady State and Restarted. It was shown that a GA
with immigration reduces the number of function evaluations required to find the
global minimum of a cost function, and also reduces-the number of outliers. Further
research using a generational GA was recommended.

The concept of convergence was discussed. Emphasis was placed on the dif-
ference between bitwise convergence of the population and convergence to a global
optimum. The GA with immigration was shown to converge in probability to the
global optimum of a cost function.

The issue of representation of ARM symbols in 2 GA member was discussed.
It was decided to encode semantic information in the symbols to allow the GA to
exploit the underlying structure of the members. Finally, a method for finding sets
of high POE robotic actions for a given effect was outlined. The technique chosen

is similar to those in the GA literature and is based on the concept of speciation.

CHAPTER 5
A BOLTZMANN MACHINE FOR THE ORGANIZATION OF

INTELLIGENT MACHINES

The purpose of this chapter is to relate the design of the ARM to the concept of
Intelligent Machines. In particular, the ARM can form the Organization level of
the Intelligent Machine, as defined by Saridis. Much of this chapter has appeared
in [16].

Since 1977 Saridis has been developing a novel approach, defined as Hierarchi-
cal Intelligent Control, designed to organize, coordinate and execute anthropomor-
phic tasks by a machine with minimum interaction with a human operator. This
approach utilizes analytic (probabilistic) models to describe and control the various
functions of the Intelligent Machine structured by the intuitively defined principle
of Increasing Precision with Decreasing intelligence (IPDI) as presented in [96].

This principle, which resembies the managerial structure of organizational sys-
tems [97], has been derived on an analytic basis by Saridis [98]. The impact of this
work is in the engineering design of intelligent robots, since it provides analytic
techniques for universal production (blueprints) of such machines.

The outline of the chapter follows. In section 5.1 some mathematical theory of
the Intelligent Machine is outlined. In section 5.2, some definitions of the variables
associated with the principle, such as Machine Intelligence, Machine Knowledge,
and Precision are made [18]. Section 5.3 describes the procedure to establish a
Boltzmann machine, such as the ARM, on an analytic basis as the Organization

level. Section 5.4 concludes this chapter.

154

5.1 The Mathematical Theory of Intelligent Controls

To design intelligent machines that require their operation control system to
possess intelligent functions such as simultaneous utilization of a memory, learn-
ing, or multilevel decision making in response to “fuzzy” or qualitative comménds,
The theory of Intelligent Controls has been developed by Saridis [99, 13]. It uti-
lizes the results of cognitive systems research effectively with various mathematical
programming control techniques {100].

The theory of Intelligent Control systems, proposed by Saridis [12] combines
high level decision making with advanced mathematical modeling and synthesis
techniques of system theory with linguistic methods of dealing with imprecise or in-
complete information. This produces a unified approach suitable for the engineering
needs of the future. The theory may be thought of as the result of the intersection
of the three major disciplines of Artificial Intelligence, Operations Research, and
Control Theory. This research is aimed to establish Intelligent Controls as an engi-
neering discipline, and it plays a central role in the design of Intelligent Autonomous
Systems.

The control intelligence is hierarchically distributed according to the Principle
of Increasing Precision with Decreasing Intelligence (IPDI), evident in all hierarchi-
cal management systems. They are composed of three basic levels of controls even
though each level may contain more than one layer of tree-structured functions as
shown in Figure 5.1. These levels are:

1. The Organization level.
2. The Coordination level.
3. The Execution level.

The Organization level, as shown in Figure 5.2, is intended to perform such

operations as planning and high level decision making from long term memories. It

may require high level information processing such as the knowledge based systems

155

COORZINATOR COORDEIMATOR
! s
RARDWARR BRARDWARS
CONTRCL, CONTRIE,
PROCRSS mocxss
i]

Figure 5.1: Intelligent Machine Hierarchy

encountered in Artificial Intelligence. These require large quantities of knowledge
processing but require little or no precision.

The functions involved in the upper levels of an Intelligent Machine are imitat-
ing functions of human behavior and may be treated as elements of knowledge-based
systems. Actually, the activities of planning, decision ma.king, learning, data storage
and retrieval, task coordination, etc. may be thought of as knowledge handling and
management. Therefore, the flow of knowledge in an Intelligent Machine may be
considered as the key variable of such a system.

Knowledge flow in an Intelligent Machine’s organization level is present in the
following high level activities.

1. Data Handling and Management.
2. Planning and Decision Making performed by the central processing units.
" 3. Sensing and Data Acquisition obtained through peripheral devices.

4. Formal Languages which define the software.

The uncertainty present in the knowledge of the Organization level can be

156

TR O Mastiay
Reamming
Low Unasvusyy
Subgeel S
Ten
-~ [Koty | e
Ovtovut Subguuis
oshion
Pttt Dnstoten
Mating
Intrmsten fon Cowdinnsen Prnaive Sran Suing
Lovein » Coamttanare

Figure 5.2: Organization Level of Intelligent Machine

represented by an analytic function and serves as a measure of the performance
of this level at different activities. Saridis has chosen the entropy function as an
analytic measure to represent the uncertainty [12] of the Organization level.

The Coordination level is an intermediate structure serving as an interface
between the organization and execution level. Its performance is also measured by
an entropy function.

The Coordination level is involved with coordination of actions, decision mak-
ing and learning on a short term memory, e.g., a buffer. As input, the Coordination
level receives high level planning steps from the Organization level. Each step in the
plan dictates an action that must be performed in the environment of the Intelligeat
Machine. The Coordination level maps the high level plan onto the environment
by selecting detailed actions that have a minimum entropy of execution. These en-
trof:ies are derived from subjective probabilities provided initially and updated by
feedback from the Execution level. The detailed actions are then provided to the

Execution level for execution in the environment.

157

Recent work in the Coordination level includes communication protocols for-
mulated by Wang (101, 102] and a collision avoidance coordinator for mobile robots,
developed by Kyriakopoulos [103].

| The Ezecution level executes the appropriate actions in the environment, which
are represented as control functions at this level in the Intelligent Machine hierarchy.
Its performance measure can also be expressed as an entropy, thus unifying the
performance measures of an Intelligent Machine.

Optimal control theory utilizes a non-negative functional of the states of a sys-
tem in the state space, and a specific control from the set of all admissible coﬁttols,to
define the performance measure for some initial conditions (z(t),t), representing a
generalized energy function. Minimization of the energy functional yields the desired
control law for the system.

For an appropriate density function p(z, u(z,t),t) satisfying Jaynes’ Maximum
entropy principle [104], it was shown by Saridis that the entropy H (u) for a particular
control action u(z,t) is equivalent to the expected energy or cost functional of the
system [98)]. Therefore, minimization of the entropy H(u) yields the optimal control
law of the systems. Therefore, since the actions executed by the Execution level are
represented as control functions, their performance can be evaluated by an entropy
measure.

Since all levels of a hierarchical intelligent control system can be 'rneasured
by entropies and their rates, the optimal operation of an “intelligent machine” can
be obtained through the solution of mathematical programming problems. Since
entropy satisfies the additive property, this programming problem must minimize
the total entropy of activities in the Intelligent Machine.

" The various aspects of the theory of hierarchically intelligent controls are sum-

marized by Saridis as follows [13].

158

The theory of intelligent machines may be postulated as the mathemat-
ical problem of finding the right sequence of decisions and controls for
a system structured according to the principle of increasing precision
with decreasing intelligence (constraint) such that it minimizes its total

entropy.

The above analytic formulation of the “Intelligent Machine problem” as a
hiérarchica.lly intelligent control problem is based on the use of entropy as a measure
of performance at all the levels of the hierarchy. It has many advantages because of
the tree-like structure of the decision making process, and brings together functions

that belong to a variety of disciplines.

5.2 Knowledge Flow and the Principle of IPDI

The general concepts of Intelligent Control Systems are the fundamental no-
tions of Machine Intelligence, Machine Knowledge, its Rate and Precision. The

following definitions are made by Saridis to elucidate these concepts.

Definition 5.1. Machine Knowledge is defined to be the structured information
acquired and applied to remove ignorance or uncertainty about a specific task per-

taining to the Intelligent Machine.

Definition 5.2. Rate of Machine Knowledge is the flow of knowledge through an
Intelligent Machine.

- Intelligence is defined by the American Heritage Dictionary of the English
Language [105] as: Intelligence is the capacity to acquire and apply knowledge. In

terms of Machine Intelligence, this definition is modified to yield:

v

159

Definition 5.3. Machine Intelligence (MI) is the set of actions which operates on

a database (DB) of events to produce flow of knowledge (R).

One may directly apply the Law of Partition of Information Rates of Conant
[106] to analyze the functions of the intelligence within the activities of an Intelligent

Control System.

Definition 5.4. Imprecision is the uncertainty of execution of the various tasks of

the Intelligent Machine.
On the other hand, one may define Precision as follows:

Definition 5.5. Precision is the complement of Imprecision, and represents the com-

plexity of a process.

Analytically, Saridis summarizes the relationships as follows.

Knowledge (K) representing a type of information may be represented as

K = —a—In{P(K)} = (Energy) (5.1)

where P(K’) is the probability density of knowledge and « is a probability
normalizing constant.
From (5.1) the probability density function P(K) satisfies the following ex-

pression in agreement with Jaynes’ principle of Maximum Entropy [104]:

P(K)y=e"K;, a= ln/x e Fdz (5.2)

The Rate of Knowledge R which is the main variable of an Intelligent Machine

with discrete states is

160

dK

R=—

= (Power) (5.3)

where t represents time.
It was intuitively thought h;y Saridis that the Rate of Knowledge must satisfy
the following relation which may be thought of expressing the principle of Increasing

Precision with Decreasing Intelligence [13].

(MI): (DB) — (R) | (5.4)

A special case is when R is fixed, machine intelligence is largest for a smaller
data base. This is in agreement with Vamos’ theory of Metalanguages [107]. It is
interesting to notice the resemblance of this entropy formulation of the Intelligent
Control Problem with the e~entropy formulation of the metric theory of complexity
originated by Kolomogorov [108] and applied to system theory by Zames [109].
Both methods imply that an increase in knowledge (feedback) reduces the amount
of entropy (e—entropy) which measures the uncertainty involved with the system.

Therefore, the analytic formulation of the above principle has been derived by
Saridis from simple probabilistic relations among the Rate of Knowledge, Machine
Intelligence and the Database of Knowledge. The entropies of the various functions

come naturally into the picture as a measure of their activities.

5.3 The Organization Level as a Boltzmann Machine.

In the current literature of parallel architectures for Machine Intelligence, the
Boltzmann Machine represents a powerful. neural network based architecture that
allows efficient searches to optimally obtain the combinati;)n of certain input vari-
ables and constraints [55]. The formulation of the ARM demonstrates this capability.

The Boltzmann architecture may be interpreted as the machine that searches

for the optimal interconnection of several nodes (neurons) representing different

161

primitive events to produce a string defining an optimal task. Such a device may
prove extremely useful for the design of the Organization level of an Intelligent
Machine [18].

One of the main functions of the Organization level is to construct a set of
primitive events which represent an activity to be executed by the Intelligent Ma-
chine in order to achieve a desired goal. Primitive events consist of é.ctors, actions
and objects which combine to form the robotic action. The set of primitive events
which form the activity must also minimize the uncertainty of achieving the goal.
Mapping these requirements onto a Boltzmann Machine, we can define the following

sets of nodes:
1. Input nodes that represent a desired goal or subgoal.

2. Output nodes that represent primitive events which must be executed by the

Intelligent Machine to satisfy the input goal.

3. Hidden nodes which allow the development of complex interactions between

input and output nodes.

As we can see, this is structurally identical to the model of the ARM.

We associate the state of each node with a binary random variable n; = {0,1},
with a priori probabilities p(n; = 1) = p; . p(n; = 0) =1 — pi, where 1 represents
the assertion of node ¢, and 0 indicates node i is not asserted. For the standard
definition of the Boltzmann Machine, and the ARM model pi = 0.5. The state
vector of the network, N = (ny,n,,...,n;.---,n,) is an ordered set of 0's and 1's
describing the state of the machine in terms of its nodes, for an m node machine.
It is possible to extract the string of primitive events repre-senting the optimal task
by examining the state vector of the output nodes in the network in steady state

response to a given input.

162

The standard formulation of the Boltzmann Machine uses energy as a cost
function which is minimized to find the optimal state of the machine. However in
(5.1), knowledge is defined as a form of energy. What energy represents, therefore,
is the ignorance possessed in the knowledge about a particular machine state N. As
the energy increases, the ignorance increases as well. Further, one can analytically
represent the probability that a correct set of primitive events has been found for a
particular input goal based on the knowlédge in the machine about the input-output
pair. Finally, the uncertainty of the input-output pattern N can be computed as an

entropy function.

5.4 Entropy as a Measure of Uncertainty

Entropy is used as a measure of uncertainty in the Intelligent Machine. The en-
tropy manifests itself in the interaction and interconnection of nodes in the network.
Let us begin by defining the ignorance of knowledge about a particular machine state

N by the energy function
. 1
K (N) = 5 Z z wy;n;n,; (55)
T

This is identical to the energy function of the ARM, as given in (3.10).
The probability that the output primitive event nodes are correct given the

input is a function of the ignorance in the knowledge about state N and is given by
P(K(N)) = ezp(—a - %Z': zj:w.-,-n,-n.-) (5.6)
where
» w;; is the interconnection weight between nodes i and j
o w; =0

e a is a probability normalizing factor.

163

We now wish to formulate a measure of uncertainty for the machine. A stan-

dard entropy formulation is given by:
H(X) = - 3 P(X)in{P(X)} (5.7)
X

Let us adapt this measure to reflect the uncertainty that the machine produces as

output the correct set of primitive events that achieve a desired goal. The adapted

measure has two states,
1. a correct set of primative events,
2. an incorrect set of primative events.

This yields a two state entropy measure for machine state N, where P(K(N)) is the
probability that the output is correct (state 1), and 1 — P(K(IN)) is the probability
that the output is incorrect (state 2).

The uncertainty that the output of the Boltzmann Machine is correct is given

by:
H(K(N)) = =P(K(N))in{P(K(N))} = (1 - P(K(N)))in{(1 — P(K(N)))} (5.8)

The entropy is maximum when the each of the associated probabilities P(K) = %
Maximum entropy implies complete uncertainty in a decision and reflects lack of
preference on a correct string configuration. By bounding P(K) from below by 3
one obtains a unique minimization of the entropy corresponding to the most certain
sequence of events possible which achieve a given goal.

Further, by using the formulation provided above for entropy, one can minimize
the uncertainty of the Organization level in producing a string of primitive events
which achieve a desired task by finding a configuration of node states which minimize
the energy in the Boltzmann Machine. Therefore, using this measure, one can find

a minimum entropy output by minimizing the energy in the machine.

164

5.5 Contributions and Conclusions

The main contribution of this chapter was the reformulation of the Organiza-
tion level of the Intelligent Machine as a Boltzmann Machine, and to demonstrate
that the ARM could function in this capacity. The chapter aiso provided some
baﬁkground on Intelligent Machines, and presented the fundamental definitions. It
was shown that the knowledge of the Org;nization level could be represented by
an energy function. Also, finding ;.he set of primitive events which minimizes the
entropy for a given input was shown to correspond to to a minimum energy search
of the network.

Equivalence between the Organization level and the ARM allows the former
to use the ARM training procecure to develop connection weights. This indicates
that the Organization level can be used to predict entropy values for untested com-
binations of primitive events. Also, any optimization technique used for associative
recall in the ARM can be used to search the Organization level and find an activity,

or set of activities which minimizes the entropy for a given input goal.

CHAPTER 6
A CASE STUDY

To demonstrate the capabilities of the Associative Rule Memory, this chapter

presents a case study that employs the ARM for a typical robotic application. This
case study is based upon the Task Analysis Methodology (TAM) for the NASA F light
Telerobotic Servicer [2]. Section 6.1 of this chapter broadly describes the TAM. In
section 6.2, we outline the case study plan and provide measures to evaluate the
performance of the ARM. Section 6.3 begins development of the ARM for the case
study by presenting the target world model, the general and specific rules, and
the resulting network model. Section 6.4 details the training sets that form the
experiments for the case study. Also, the results of training are presented and
analyzed. Section 6.5 describes the results of associative recall, and the optimal

planning steps. Section 6.6 reviews the results, and concludes this chapter.

6.1 The Task Analysis Methodology
As described in 2], the TAM:
* Provides a method to develop operational scenarios for telerobotic systems.

¢ Provides a method to analyze and evaluate telerobotic systems task perfor-

mance capabilities.

* Provides a common language for space station telerobotic users (i.e., opera-

tional planners, hardware and software developers, and program managers).

® Provides a method to optimize telerobotic operations on the Space Station
Freedom by assessing task scenarios and recommending task and hardware

design requirements.

166

e Provides a standard format for inputting operational scenarios to off-line plan-

ning software.
To provide these capabilities, the TAM details:

e A set of tasks (actions) that can be accomplished by work systems (agents) in
the Space Station environment. These tasks are arranged hierarchically with

increasing levels of detail.
e A set of work systems (agents) and their capabilities.
o A set of objects in the world model on which actions are performed.

Each action in the TAM can be divided into a set of more detailed sub-actions
to create plans with different levels of abstraction. Similarly, the set of effects of
robotic actions on the world model can be represented in several levels of detail.
These tiers of abstraction are called the Task Analysis Hierarchy (TAH). The
TAM planning process, described below, is repeated for each level of detail in the
TAH.

A flowchart detailing the TAM planning process is presented in Figure 6.1.
The planning process is described using the terminology we have developed in this

thesis. The description follows.

1. Task Statement. A world model goal is provided as input to the planning

process.

2. Task Decomposition. The world model goal is decomposed into a more de-

tailed set of effects that must take place in the world to achieve that goal.

-

3. Task Scripting. Using available agents, a set of robotic actions are defined

that can accomplish each of the effects.

167

4. Task Modeling and Assessment. Upon completion of a suitable plan, robotic
actions are modeled using a mockup of the world and performance is assessed.
Constraints and modifications are outlined, if necessary, and replanning oc-

curs.

Examining the capabilities and features of the TAM planning process, we see
that it is very similar té an interactive planning system, but also exﬁbodies features
of automatic planners, such as Rokey’s TIPS planner (11]. For example, step 2 of
the TAM planning process is similar to level 1 of the TIPS planner, while step 3 is
contained within level 2 of the TIPS planner.

A feature of the Space Station world model, as described by the TAM doc-
ument, is the redundancy of robotic actions. In other words, a particular desired
effect, provided by the Task Decomposition process, can be achieved by several (per-
haps many) different robotic actions. To limit the number of possible robotic action
alternatives for a given desired effect, the Task Scripting process must efficiently
determine a set of robotic actions that achieve the desired effect and optimize some
performance criteria. As we can see, this requires the same functionality provided by
the ARM model where the performance criteria is the POE value of a robotic action
for a desired effect. This case study, therefore, models step 3 of the TAM planning

process, Task Scripting, that requires some of the capabilities that are provided by

the ARM.

Work Systems

Work Sys.
Ident.

168

Redefinition

4

World Model Goal
) 4
Task
Oecomposition
Task Scripting
—
|
Redefinition
Task Modeling
Y
Compare and evaluate
Task Assessment
process

v

Figure 6.1: Task Analysis Methodology Flowchart

169

6.2 Case Study Goal

To test the functionality of the ARM model, it is applied to a typical Space
Station task as described in the TAM documentation. The task named “ORU
CHANGEOUT” has been adapted for this case study. In this scenario, the Orbital
Replacement Unit, which is attached to the Truss structure, must be deactivated,
moved to the Mobile Servicing Center and stowed. The steps follow.

Goal: ORU CHANGEOUT
1. The ORU is deactivated.
2. The ORU is detached from the Truss.
3. The ORU is attached to a carrier.
4. The carrier is moved to the Mobile Servicing Center.
5. The ORU is detached from the carrier.
6. The ORU is attached to the Mobile Servicing Center.
7. The ORU is stowed at the Mobile Servicing Center.

It is the responsibility of the ARM to find high POE robotic actions that
achieve each of the steps in the above plan. This plan will be called the goal plan
for the rest of this chapter.

Using this sample plan, the ARM will be evaluated with several criteria:
1. The ability to represent general rules.

2. The ability to accurately store specific rules and corresponding POE values

from the training set.

3. The ability to predict POE values for untested specific rules.

170

4. The speed of associative recall of the optimal robotic action for each desired

effect of the plan.
5. The speed of associative recall of a set of near-optimal robotic actions for each

desired effect of the plan.

6.3 Design of the Case Study using the Task Analysis Methodology

To determine a set of robotic actions that accomplish the goal plan, we must

first develop the ARM model. This is accomplished as follows:
1. Determine the target world model.
2. Define the symbol classes for agents in the world model.
3. Develop a set of general rules.

4. Create a suitable ARM network from the symbols, symbol classes and general

rules.

6.3.1 The world model and symbol classes

This study focuses on the Telerobotic level of the TAH. This level possesses the
required degree of abstraction within which the ARM is suited to function. From
this level, a world model is defined consisting of actors and objects. The actors are

telerobots and consist of
o Dextrous Manipulators
o Positioners

e Transporters

The objects in the world consist of

171

Telerobots

e Tools

e Carriers and Platforms

e Sites

Other parts

A full breakdown of the symbol classes is presented in Appendix B along
with the set of symbols that fit in each class. The agents used in this study are a
combination of agents from the TAM document, and agents defined specifically for
this study. The extra agents are added to show the full capabilities of the ARM by
increasing the redundancy of the environment. The classification is accomplished
heuristically by grouping agents together that are similar. Other classifications may

also be possible and valid.

6.3.2 A general rule grammar

The general rule grammar is designed to represent a high degree of robotic

action functionality. It includes the following capabilities:
1. The ability for two robots to work together to accomplish a task.
2. The ability for a tool to be used in accomplishing a task.
The general rule grammar is defined as
ACTOR ACTION OBJp OBJ; SLAVE TOOL —

OBJp STATE OBJ, (6.1)

where

o ACTOR is limited to class < robot >.

e ACTION is an action symbol.

OBJp is the direct object class and is limited to < object >.

OBJ is the indirect object class and is limited to < object >.

SLAVE is a secondary robot and is limited to class < robot >.

TOOL is a limited to class < tools >.

STATE is a state symbol.

Using this structure, the general rules generated from the TAM documentation
are presented in Figures 6.2 and 6.3.

Following the conventions outlined in Chapter 3, the direct object of the
robotic action must be the same as the direct object of the desired effect. Sim-
ilarly, the indirect object of the robotic action must be the same symbol as the
indirect object in the desired effect.

The general rules provide a set of actions, many of which lead to the same state
in the rule effect. Different action symzols that lead to the same effect represent
real-world, alternative methods for achieving the state. As many of these rules show,
different methods often require different sets of SLAV E's or TOOLs to achieve the
desired effect.

Some of the actions also lead to multiple effects, such as HOLD and
RETRACT. This is to demonstrate that the ARM is capable of representing mul-
tiple effects of general rules.

Also, the agent symbols include a BLANK value, which can be used when
the robotic action does not require an OBJ symbol to be successful. For example,
although the action STOW allows a < fiz > symbol, a fixturing tool may be

unnecessary to achieve a high POE value. If this is the case, the < fiz > variable

173

o <dex> ACTUATE < object> NULL NULL < active> —
< object > IS~ ACTIVATED NULL

<dex > ATTACH < object > < object > < dexpos> NULL —
< object > IS — ATTACHED - TO < object >

¢ <dez > CONNECT < object> < object> NULL < fiz> —
<object > IS - ATTACHED —TO < object >

<dez > DEACTIVATE < object > NULL < dexpos> < active >

—

< object > IS~ DEACTIVATED NULL

<dez > DEACTUATE < object > NULL NULL < active> —
< object > IS~ DEACTIVATED NULL

<dez > DEPLOY < object> NULL <der> < active> —
< object > IS~ ACTIVATED NULL.

<dez > DEPLOY < object> < object> < der > < active> —
< object > IS — AT < object >.

<dez > DETACH < object > < object > <pos> NULL —
< object > IS ~DETACHED - FROM < object >

< dez > DISCONNECT < ohject> < object> NULL < defiz >

—_

< object > IS - DETACHED — FROM < object >

<dez > FASTEN < object > < object > < dexpos > < fiz > —
< object > IS - ATTACHED —TO < object >

<dex > HOLD < object> < object > < dezpos > < fiz> —
< object > IS — AT < object >.

o <dez > HOLD < object > < object > < dezpos > < fiz> —
<object > IS~ ATTACHED -TO < object >.

~

Figure 6.2: Case Study General Rules

174

< dezx > OPERATE <object> NULL < dexpos> < active> —
< object > IS — ACTIVATED NULL.

< dezpos > PLACE < object > < object > < derxpos> NULL —
< object > IS — AT < object >.

< robot > POSITION < object > < object> NULL NULL —
< object > IS — AT < object >.

< robot > RETRACT < object > NULL < dezpos> < active> —
< object > IS -DEACTIVATED NULL

< robot > RETRACT < object > < object > < dexpos > < active >
——

< object > IS — AT < object >

< robot > STOW < object > < object > <dex> < fiz> —
< object > IS — STOWED — AT < object >

< trans > TRANSPORT < object> < object > NULL NULL —
< object > IS — AT < object >

<dex > UNFASTEN < object > < object > < dezpos > < defizr >

—_

< object > IS - DETACHED — FROM < object >

< robot > UNSTOW < object > <object > <dex > <defiz> —
< object > IS —UNSTOWED -TO < object >

Figure 6.3: Case Study General Rules, cont'd.

175

would be instantiated with the BLAN K symbol during recall, to develop a high

POE robotic action.

6.3.3 The ARM network

Given the structure of the general rules, the ARM network is comprised of

three input levels and six output levels. The input levels are

1. OBJp

2. STATE

3. OBJ;

The butput levels are

1. ACTOR

2. ACTION

3. OBJp

4. OBJ;

5. SLAVE

6. TOOL

From the discussion in Chapter 3, one node is used to represent each symbol
on each level. The input level nodes are presented in Figure 6.4. Similarly, the set
of nodes that form the output levels are presented in Figure 6.5. The set of all input
and output node combinations allows us to represent the possible robotic actions

required to achieve the goal plan.

176 u

1. OBJp: FTS, SPDM, JRMS, EVA. GDMS, MRMS, |
SRMS, SSRMS, ATD, APS, MMU, MT,
CETA, OMV, ORBITER, GLUEGUN, WELDER,
BOLTER, PINS-H, PINS-M, PINS-L, CLAMP-H,
CLAMP-M, CLAMP-L, GRAPPLER-H, GRAPPLER-M,
GRAPPLER-L, PRYBAR, SEPARATOR, DEMATOR,
TOOLSET0, TOOLSET!1, TOOLSET?2, TOOLSETS,
TOOLSET4, TOOLSETS5, TOOLSET6, CARRIER-L,
CARRIER-M, CARRIER-S, PALLET-L, PALLET-M,
PALLET-S, ORU, TRUSS, AWP, MSC

2. STATE: IS-ACTIVATED, IS-AT, IS-ATTACHED-TO, IS-DEACTIVATED,
IS-DETACHED-FROM, IS-INSIDE-OF, IS-STOWED-AT, IS-UNSTOWED-
TO

3. OBJ;1: BLANK, CARGO-BAY, AIRLOCK, FTS, SPDM, JRMS, |
EVA, GDMS, MRAMS, SRMS, SSRMS, ATD, APS,
MMU, MT, CETA, OMV, ORBITER, CARRIER-L,
CARRIER-M, CARRIER-S, PALLET-L, PALLET-M, PALLET-S,
CrRl, Talzs, AWP, MSC

Figure 6.4: Input levels and nodes for case study network

177

. ACTOR: FTS, SPDM, JRMS, EVA, GDMS, MRMS,
SRMS, SSRMS, ATD, APS, MMU, MT,
CETA, OMV, ORBITER

. ACTION: ACTUATE, ATTACH, CONNECT, DEACTIVATE,
DEACTUATE, DEPLOY, DETACH, DISCONNECT,

FASTEN, HOLD, OPERATE, PLACE, POSITION, RETRACT,
STOW, TRANSPORT, UNFASTEN, UNSTOW

- OBJp: This list is the same as the OBJp list for the input level.
. OBJj: This list is the same as the OBJ list for the input level.

. SLAVE: This list is the same as the ACTOR level for the output level, but
also includes a BLANK node.

- TOOL: GLUEGUN, WELDER, BOLTER, PINS-H, PINS-M, PINS-L,
CLAMP-H, CLAMP-M, CLAMP-L, GRAPPLER-H,

GRAPPLER-M, GRAPPLER-L, PRYBAR, SEPARATOR,
DEMATOR, TOOLSET0, TOOLSET1, TOOLSET2, TOOLSETS,
TOOLSET{, TOOLSET5, TOOLSETS6, BLANK

Figure 6.5: Output levels and nodes for case study network

178

6.4 Case Study Experiments

The case study experiments are constructed to simulate tests performed in a

real-world, Space Station telerobotic environment.

6.4.1 Experimental Procedure

The test suite is comprised of seven training/knowledge sets, which correspond
to the seven steps in the goal plan presented 1n section 6.2. Initially, the network
is trained on each set individually to demonstrate that the network can accurately
represent the specific rules and POE values in each of the trafning sets. General
rules and knowledge rules are then added to the network. Predictive capabilities of
the ARM network are examined for each training set. The network is reset after
each test, and the next training set is evaluated.

The network is then trained on all the training sets combined. Accuracy of
training is examined for this large test case. The general rules and all the knowl-
edge rules are added to the network. Predictive capabilities are tested, and it is
demonstrated that combining the training sets creates symbolic relationships that

were not present in each of the individual training sets.

6.4.2 Experimental Suite

The seven training/knowledge sets are presented in Figures 6.6 - 6.12. The

training sets are developed to indicate the following relationships.

1. Training set: TOOLSETO0 can’t be used to deactivate the ORU. The GDMS
works well as a slave robot with the ORU.

- Knowledge set: Dextrous manipulators can only use light toolsets.

2. Training set: The JRM S can’t be used near the CARGO — BAY. The APS
can’t be used with the ORU.

179

Knowledge set: None.

3. Training set: The SPDM can’t be used to attach the ORU. The GDMS is
particular good at attaching objects. The ORU can be reliably attached to
CARRIER - L.

Knowledge set: The ORU can'’t be attached to small carrier types. Grapplers
can’t be used to attach CARRIER — M ot PALLET — L. Pins can’t be used
to attach CARRIER — L ot PALLET — M.

4. Training set: The AT D can’t move large carriers. The M T should be used to
move large carriers.

Knowledge set: Dextrous manipulators can’t be used to move heavy carriers.

5. Training set: The SPDM and JRM S can’t detach from CARRIER — M or
CARRIER-L. The FTS can’t detach from PALLET — M or PALLET~L.

Knowledge set: None

6. Training set: Grapplers work well attaching the ORU to the MSC.

Knowledge set: None

7. Training set: None
Knowledge set: Transporters should not be used to stow the ORU. Only
PINS, GRAPPLER, and CLAM PS should be used to stow the ORU.

Since the training sets are limited, other symbol relationships may be devel-
oped besides the stated ones above. These “side-effects” will be demonstrated when
prediction using these networks is presented.

. The combination training set contains all the specific rules of training sets
1-7. Similarly, the combination knowledge set contains all the knowledge rules of
knowledge sets 1-7. Therefore, there are 44 specific rules in the combination training

set and 20 knowledge rules.

Training Set:

FTS DEACTUATE ORU NULL NULL TOOLSET! —
ORU IS-DEACTIVATED NULL POE: 0.92

SPDM ACTUATE ORU NULL NULL TOOLSET2 —
ORU IS-ACTIVATED NULL POE: 0.90

FTS DEACTIVATE AWP NULL GDMS TOOLSET! —
AWP [S-DEACTIVATED NULL POE: 0.95

FTS DEACTIVATE ORU NULL BLANK TOOLSETO —
ORU IS-DEACTIVATED NULL POE: 0.50

JRMS OPERATE ORU NULL GDMS TOOLSET2 —
ORU IS-ACTIVATED NULL POE: 0.92

Knowledge Set:

< der > NULL NULL NULL NULL TOOLSET3 —
NULL IS-DEACTIVATED NULL

< dex > NULL NULL NULL NULL TOOLSET{ —
NULL IS-DEACTIVATED NULL

< dexz > NULL NULL NULL NULL TOOLSETS5 —
NULL IS-DEACTIVATED NULL

< dex > NULL NULL NULL NULL TOOLSET6 —
NULL IS-DEACTIVATED NULL

< dex > NULL NULL NULL NULL TOOLSET3 —
NULL IS-ACTIVATED NULL -

< dexz > NULL NULL NULL NULL TOOLSET4 —
NULL IS-ACTIVATED NULL

< dez > NULL NULL NULL NULL TOOLSETS —
NULL IS-ACTIVATED NULL

< dex > NULL NULL NULL NULL TOOLSET6 —
NULL IS-ACTIVATED NULL

Figure 6.6: Training set 1

180 u

Training Set:

o JRMS DETACH ORU CARGO-BAY APS NULL —
ORU IS-DETACHED-FROM CARGO-BAY POE: 0.50

o JAMS DETACH ORU MSC BLANK NULL —
ORU IS-DETACHED-FROM MSC POE: 0.95

e GDMS DISCONNECT ORU TRUSS NULL PRYBAR —
ORU IS-DETACHED-FROM TRUSS POE: 0.75

e MRMS DISCONNECT ORU TRUSS NULL SEPARATOR —
ORU IS-DETACHED-FROM TRUSS POE: 0.95

Knowledge Set: None

Figure 6.7: Training set 2

181

Training Set:

SPDM ATTACH ORU CARRIER-L FTS NULL —
ORU IS-ATTACHED-TO CARRIER-L POE: 0.40

GDMS ATTACH ORU CARRIER-L FTS NULL —
ORU IS-ATTACHED-TO CARRIER-L POE: 0.97

SPDM ATTACH PINS-H CARRIER-L FTS NULL —
PINS-H IS-ATTACHED-TO CARRIER-L POE: 0.84

SPDM POSITION ORU CARGO-BAY NULL NULL —
ORU IS-AT CARGO-BAY POE: 0.82

MRMS CONNECT ORU PALLET-L NULL PINS-H —
ORU IS-ATTACHED-TO PALLET-L POE: 0.97

FTS FASTEN ORU CARRIER-L BLANK GRAPPLER-M —
ORU IS-ATTACHED-TO CARRIER-L POE: 0.85

GDMS CONNECT PALLET-M CARRIER-M NULL PINS-M —
PALLET-M IS-ATTACHED-TO CARRIER-M POE: 0.95

FTS CONNECT PALLET-M CARRIER-M NULL PINS-H —
PALLET-M IS-ATTACHED-TO CARRIER-M POE: 0.97

Knowledge Set:

NULL NULL ORU CARRIER-S NULL NULL —
NULL IS-ATTACHED-TO NULL

NULL NULL ORU PALLET-S NULL NULL —
NULL IS-ATTACHED-TO NULL

NULL NULL NULL PALLET-L NULL < grappler > —
NULL IS-ATTACHED-TO NULL

NULL NULL NULL PALLET-M NULL < pins > —
NULL IS-ATTACHED-TO NULL

NULL NULL NULL CARRIER-M NULL < grappler > —
NULL IS-ATTACHED-TO NULL

NULL NULL NULL CARRIER-L NULL < pins > —
NULL IS-ATTACHED-TO NULL

Figure 6.8: Training set 3

o457

£

183

Training Set:

o JRMS PLACE CARRIER-S MSC BLANK NULL —
CARRIER-S IS-AT MSC POE: 0.95

o FTS PLACE PALLET-S TRUSS BLANK NULL —
PALLET-S IS-AT TRUSS POE: 0.97

o FTS PLACE TOOLSET0 MSC BLANK NULL —
TOOLSETO0 IS-AT MSC POE: 0.95

e SPDM PLACE GLUEGUN TRUSS BLANK NULL —
GLUEGUN IS-AT TRUSS POE: 0.97

o ATD PLACE PALLET-L CARGO-BAY FTS NULL —
PALLET-L IS-AT CARGO-BAY POE: 0.43

o ATD PLACE PALLET-S TRUSS FTS NULL —
PALLET-S IS-AT TRUSS POE: 0.87

o ATD POSITION CARRIER-M TRUSS NULL NULL —
CARRIER-M IS-AT TRUSS POE: 0.89

e ATD POSITION CARRIER-L TRUSS NULL NULL —
CARRIER-L IS-AT TRUSS POE: 0.40

e APS POSITION PALLET-M CARGO-BAY NULL NULL —
PALLET-M IS-AT CARGO-BAY POE: 0.92

e MT TRANSPORT CARRIER-L TRUSS NULL NULL—
CARRIER-L IS-AT TRUSS POE: 0.95

o MT TRANSPORT PALLET-L CARGO-BAY NULL NULL —
PALLET-L IS-AT CARGO-BAY POE: 0.92

Knowledge Set:

o <dex > NULL PALLET-L NULL NULL NULL —
NULL IS-AT NULL

o <dex > NULL PALLET-M NULL NULL NULL —
NULL IS-AT NULL

e < dez > NULL CARRIER-L NULL NULL NULL —
NULL IS-AT NULL

o <dex > NULL CARRIER-M NULL NULL NULL —
NULL IS-AT NULL

Figure 6.9: Training set 4

184 []

Training Set:

SPDM DETACH ORU CARRIER-M BLANK NULL — =
ORU IS-DETACHED-FROM CARRIER-M POE: 0.45

SPDM DETACH ORU CARRIER-L BLANK NULL —
ORU IS-DETACHED-FROM CARRIER-L POE: 0.50

SPDM DETACH GRAPPLER-M PALLET-L BLANK NULL —
GRAPPLER-M IS-DETACHED-FROM PALLET-L POE: 0.95

JRMS DISCONNECT ORU CARRIER-M NULL PRYBAR — l
ORU IS-DETACHED-FROM CARRIER-M POE: 0.55 '

JRMS DISCONNECT ORU CARRIER-L NULL PRYBAR —
ORU IS-DETACHED-FROM CARRIER-L POE: 0.52

JRMS DISCONNECT GRAPPLER-L PALLET-M NULL PRYBAR —
GRAPPLER-L IS-DETACHED-FROM PALLET-M POE: 0.98

FTS DISCONNECT ORU PALLET-L NULL SEPARATOR —
ORU IS-DETACHED-FROM PALLET-L POE: 0.43

FTS DISCONNECT ORU PALLET-M NULL SEPARATOR —
ORU IS-DETACHED-FROM PALLET-M POE: 0.52

FTS DISCONNECT ORU CARRIER-L NULL SEPARATOR —
ORU IS-DETACHED-FROM CARRIER-L POE: 0.95 1

GDMS DISCONNECT PALLET-M CARRIER-L NULL PRYBAR —
PALLET-M IS-DETACHED-FROM CARRIER-L POE: 0.87

MRMS DETACH PINS-L PALLET-M BLANK NULL —
PINS-L IS-DETACHED-FROM PALLET-M POE: 0.95

GDMS DETACH PALLET-S CARRIER-M APS NULL —
PALLET-S IS-DETACHED-FROM CARRIER-M POE: 0.90

MRMS DISCONNECT PINS-H PALLET-M NULL SEPARATOR —
PINS-H IS-DETACHED-FROM PALLET-M POE: 0.92

Knowledge Set: None

Figure 6.10: Training set 5 2

Training Set:

o FTS ATTACH ORU MSC BLANK NULL —
ORU IS-ATTACHED-TO MSC POE: 0.40

e FTS CONNECT.ORU MSC NULL GRAPPLER-M —
ORU IS-ATTACHED-TO MSC POE: 0.95

o SPDM FASTEN ORU MSC FTS GRAPPLER-H —
ORU IS-ATTACHED-TO MSC POE: 0.95

Knowledge Set: None

Figure 6.11: Training set 6

Training Set: None
Knowledge Set:

e <trans > NULL ORU NULL NULL NULL —
NULL IS-STOWED-AT NULL

e NULL NULL ORU NULL NULL < fiz — other > —
NULL IS-STOWED-AT NULL

Figure 6.12: Training set 7

185

186

6.4.3 Training results

This section presents the results of training the ARM network on each of the
training sets, and the result of training the network on the combined training sets.

The following training constants are used in the case study:

0 < w;; <1, the bounds on the weights.

e = 0.05, the ‘gra.dient step size for training sets 1 - 4 and 6. The gradient

step size for training sets 5 and the combination set is ¢ = 0.025.

e Dif ferror = 0.25, the error band for rule selection.

¢ ©, = 1077, the minimum gradient before stopping.

® ©; = 5x 1073 the dasired accuracy of each rule in the training set.
e ©5 = 1 x107* the minimum weight before pruning is allowed.

e a; = 1 x 1074, the first order forcing function constant.

+ a; = 4 x 1073, the second order forcing function constant.

Since the number of rules in training set 5 and the combination set is large, a
smaller step size has to be used during gradient descent.

Table 6.1 presents the results of training. As evident from the data in this
table, each set was trained very accurately on the network. In fact, the maximum
error of any of the rules in any of the training sets was less than 0.01 of the acceptable
error. Training set 3 generated 10 second order nodes, of which 6 were removed
through the pruning process. The combination training set generated 20 second
order nodes of which 14 were pruned. It is also evident from the data that larger
training sets required more gradient iterations, which is expected.

The results of the training show that it is quite difficult to generate higher

order nodes. Since the number of first order connections available to a specific rule

Table 6.1: Results of case study training sets

Training Set || Iterations | Maz (G,)* ¥ (G,)*
1 184 0.9x10~7% J1.6 x10-°
2 90 0.2x10"° [0.5x10"°
3 404 0.8x10~° | 1.7 x 10-°
4 357 1.1 x10~2 | 2.8 x 10-°
5 1385 0.4 x 1079 [1.4 x10-°
6 88 0.0 x 10-° | 0.1 x 10-°
7 - - -
Comb. 2398 1.9 x10~° | 3.6 x 10-°

187

is large, a specific rule in the training set can often place the blame for a low POE
value on one of its connections that is not used by other rules in the training set.
This inhibits the development of a higher order relationship. Using a larger training
set with more overlapping sets of symbols would reduce the number of rules that
have first order connections that can be falsely blamed for low POE values. This
would force the training procedure to generate more higher order nodes. It is also
possible to generate more higher order nodes if the maximum weight allowed on a
connection is decreased by reducing the allowable blame for first order connections.

Another methcd ior ceveivping ...ore higher order relationships is to increase
the value of a, in the first order forcing function (3.23), past its maximum allowable
value (3.35). This would reduce the chance that the desired accuracy of a specific
rule could be achieved in first order connections, and would lead to the development

of higher order nodes.

6.4.4 Examples of Prediction

-~ After each training, the ARM was evaluated for its prediction capabilities on
the given training set. To do this, a set of specific rules was constructed that tested
the desired relationships of the training set (as described in section 6.4.2). Each

rule was asserted on the network. The POE value of each asserted rule was then

188

examined in terms of the desired relationships. The base probability value for an
untested specific rule was set at 0.80.

Figures 6.13 and 6.14 show sample prediction rules for training sets 1 and 3,
respectively. Although each network was tested with a larger set of rules, these
figures provide a good demonstration of prediction with the ARM.

Examining figure 6.13, we see that test rules 1 - 3 are members of the training
set, and were accurately represented when asserted on the network. Further, the
cof is 1.0, denoting training set rules. Rule 4 in this figure demonstrates that the
network was able to produce a low POE value with high confidence for a rule that
dictates the deactivation of the ORU with TOOLSETO0. Rules 5, 6 and 7 also show
inhibition between these symbols, but demonstrate another relationship developed
through training. The training set has allowed inhibition to be created between the
nodes DEACTUATE in the robotic action and ORU in the effect. Although this
may be true in the real world, this relationship is something that we (the user) did
not foresee, but was evidently present in training set 1. The cf values for these rules
are somewhat low, denoting both untested connections and reduced overlap with
rules in the training set. Rule 8 demonstrates that a low POE value is assigned
to a rule that is provided by knowledge set 1, which contains the list of symbol
combinations that should be avoided. The final rule presents the prediction of an
untested rule with a high POE value and a high cf.

Figure 6.14 also demonstrates the storage and prediction capabilities of the
ARM. Rules 1 - 3 are members of training set 3 and were accurately stored. Rules
4, 5 and 6 demonstrate that the SPDA/ can move the ORU, and that the SPDM
and can attach PALLET — M fairly well; however, the SPDM cannot attach the
ORU. This is a higher order relationship and requires second order nodes. Rule 7
shows that the GDM S performs well at achieving an attachment. Rules 8 and 9

contain symbol combinations that are disallowed by the knowledge set and, thereby,

189

. FTS DEACTUATE ORU NULL NULL TOOLSET! —
ORU IS-DEACTIVATED NULL
E = 0.083394; POE = 0.919989; ¢f = 1.000000

. FTS DEACTIVATE ORU NULL BLANK TOOLSETO0 —
ORU IS-DEACTIVATED NULL
E = 0.693139; POE = 0.500004; cf = 1.000000

. JRMS OPERATE ORU NULL GDMS TOOLSET2 —
ORU IS-ACTIVATED NULL
E = 0.083382; POE = 0.920000; cf = 1.000000

. JRMS DEACTIVATE ORU NULL BLANK TOOLSETO0 —
ORU IS-DEACTIVATED NULL
E = 0.672337; POE = 0.510514; cf = 0.848528

. JRMS DEACTIVATE ORU NULL GDMS TOOLSET0 —
ORU IS-DEACTIVATED NULL
E = 0.453924; POE = 0.635131; cf = 0.734847

. SPDM DEACTUATE ORU NULL NULL TOOLSETO —
ORU IS-DEACTIVATED NULL
E = 0.293932; POE = 0.745327; cf = 0.661438

. FTS DEACTIVATE ORU NULL GDMS TOOLSET! —
ORU IS-DEACTIVATED NULL
E = 0.251358; POE = 0.777744; cf = 0.774597

. FTS DEACTUATE ORU NULL NULL TOOLSETS —
ORU IS-DEACTIVATED NULL
E = 1.115272; POE = 0.327826; c¢f = 0.750000

. JRMS DEACTUATE ORU NULL NULL TOOLSET! —
ORU IS-DEACTIVATED NULL
E = 0.062591; POE = 0.939327; cf = 0.810093

Figure 6.13: Prediction using training set 1

190

. SPDM ATTACH ORU CARRIER-L FTS NULL —
ORU IS-ATTACHED-TO CARRIER-L
E = 0.916282; POE = 0.400004; cf = 1.000000

. MRMS CONNECT ORU PALLET-L NULL PINS-H —
ORU IS-ATTACHED-TO PALLET-L
E = 0.030459; POE = 0.970000; cf = 1.000000

. FTS CONNECT PALLET-M CARRIER-M NULL PINS-H —
PALLET-M IS-ATTACHED-TO CARRIER-M ‘
E = 0.030459; POE = 0.970000; cf = 1.000000

. SPDM CONNECT ORU CARRIER-L NULL GRAPPLER-M —
ORU IS-ATTACHED-TO CARRIER-L
E = 0.743413; POE = 0.475488; cf = 0.748331

. SPDM POSITION ORU PALLET-L NULL NULL —
ORU IS-AT PALLET-L
E = 0.246296; POE = 0.781691; cf = 0.612372

. SPDM ATTACH PALLET-M CARRIER-M FT< NULL —
PALLET-M IS-ATTACHED-TO CARRIER-M
E = 0.190737; POE = 0.826350; cf = 0.489898

. G:DMS FASTEN ORU CARRIER-L FTS GRAPPLER-M —
ORU IS-ATTACHED-TO CARRIER-L
E = 0.097969; POE = 0.906677; cf = 0.816497

. GDMS FASTEN ORU CARRIER-M FTS GRAPPLER-M —
ORU IS-ATTACHED-TO CARRIER-M
E = 1.128829; POE = 0.323412; cf = 0.490633

. GDMS FASTEN ORU CARRIER-S FTS GRAPPLER-M —
ORU IS-ATTACHED-TO CARRIER-S
E = 1.150086; POE = 0.316610; cf = 0.430331

Figure 6.14: Prediction using training set 3

191

have low POE values.

Overall, the predictive POE values provided by the ARM for each of the
training sets showed that the ARM successfully represented the desired relationships.
Occasionally, the ARM developed unexpected symbolic relationships as well. These
additional relationships are present in the training set, however, and demonstrate
that the ARM can point out subtle relationships in a training set that may have
gone previously unnoticed by a user.

Of course, the user can explicitly discover which symbolic relationships were
formed during training by examining the connection weights of the ARM network,
since there is a one-to-one mapping between symbols and nodes. If a relationship
exists in the connections that the user did not expect, he can specifically create
new test situations in the robotic environment to examine these relationships. After
testing, the training set can be updated with the results of the new experiments, and
the ARM network can be accurately retrained with the modified data. Therefore, the
ARM also functions as a feedback mechanism that the user can exploit to determine
and test relationships that may not have been pt:eviously realized.

Figure 6.15 shows each of untested specific rules in Figures 6.13 and 6.14
asserted on the ARM network trained with training sets 1 - 7 combined. Notice
that the probability values have changed for many of the rules. This reflects that
the increased training has affected the weighted connections to make them more
representative of the combined training set.

This figure also point out a flaw in the cf measure we have chosen. It would be
preferable if the cf of each of the specific rules increased to indicate that the ARM
is “more confident” of the POE value with more training. This is not one of the
properties of our current cf measure, as indicated by cf values that are nearly the
same as those in the previous figures. If desired, a new cf measure can easily be

created by the user that also takes into account the number of times a connection

192 u

is used by different rules. The more times each connection of an untested rule is
used by specific rules in the training set, the higher the cf value would be for the
untested rule.

. JRMS DEACTIVATE ORU NULL BLANK TOOLSETO —»
ORU IS-DEACTIVATED NULL
E = 0.692621 POE = 0.500263 cf = 0.848528

. JRMS DEACTIVATE ORU NULL GDMS TOOLSET0 —
ORU IS-DEACTIVATED NULL
E = 0.562452 POE = 0.569810 cf = 0.734847

- SPDM DEACTUATE ORU NULL NULL TOOLSETO —
ORU IS-DEACTIVATED NULL
E = 0.402713 POE = 0.668504 cf = 0.661438

- JRMS DEACTUATE ORU NULL NULL TOOLSET! —
ORU IS-DEACTIVATED NULL
E = 0.082856 POE = 0.920484 cf = 0.810093

- SPDM CONNECT ORU CARRIER-L NULL GRAPPLER-M —
ORU IS-ATTACHED-TO CARRIER-L
E = 0.642305 POE = 0.526078 cf = 0.748331

. SPDM POSITION ORU PALLET-L NULL NULL —
ORU IS-AT PALLET-L
E = 0.163904 POE = 0.848823 cf = 0.612372

- SPDM ATTACH PALLET-M CARRIER-M FTS NULL —
PALLET-M IS-ATTACHED-TO CARRIER-M
E = 0.402055 POE = 0.668944 cf = 0.516398

- GDMS FASTEN ORU CARRIER-L FTS GRAPPLER-M —
ORU IS-ATTACHED-TO CARRIER-L
E = 0.000000 POE = 1.000000 cf = 0.816497

Figure 6.15: Prediction using the combined training set

193

194

6.5 Associative Recall of Robotic Actions

This section describes the associative recall experiments performed on the

ARM trained with training sets 1 - 7 combined. The purpose of the experimentation

is to find the optimal robotic action, or set of near-optimal robotic actions, that have

high POE values for effects stated in the goal plan presented in section 6.2. The
high POE robotic actions form the planning steps that must be carried out in the

b

world to achieve the stated goal.

6.5.1 Representation of Nodes

As mentioned in Chapter 4, the GA representation chosen for ARM nodes can
affect the efficiency of the GA search. Under the Principle of Meaningful Building
Blocks, it is known that short-order schemata should possess meaningful, semantic
information about the problem domain. Using this as a guideline, a binary repre-
sentation is developed from the characteristics of the agents in the world. Before
presenting the node representation, however, several points must be made.

First, it must be stated that the representation chosen is not “optimal” by some
criteria. An optimal representation would only provide best-case performance of the
GA for the given problem. Instead, a somewhat inefficient, heuristic representation
is chosen. If the GA performs well with an inefficient representation, the results are
much more impressive, since it demonstrates that the GAis a robﬁs:t technique for
associative recall across various degrees of representational efficiency.

Second, for a given desired effect, there are a known set of general rules that
are capable of generating the effect. The general rules denote the set of allowable
agents and actions that can be used to perform the robotic action. This provides
thg user with a choice. The user can allow either the representation to encompass
all possible actions and agents, or the user can restrict the representation to include

only actions and agents that can possibly achieve the effect. Either method will

e

195

allow the GA to perform correct associative recall, but the second method reduces
the size of the search space, leading to a more efficient recall process. Therefore, the
second method is chosen for representation in this case study.

By using the general rules as a “prefilter” for allowable agents and actions,
the second method somewhat reduces the need for general rules as inhibitory links
in the ARM network. From the structure of the general rules, however, we do see
that different actions that achieve the same effect often require different classes of
agent symbols as part of the robotic action. Therefore, the general rules are still
required by the ARM to restrict the agent symbols that can be used with each of
the allowable actions.

Given the above discussion, it is possible to present the representation of the
set of nodes that form a robotic action in the ARM network. The representation of
each node comes directly from the agent class hierarchy presented in Appendix B
with some semantic information about the agents information provided in Appendix
A.

Each node encodes information about its class as well as its features in binary
form, as presented in Figures 6.16 and 6.17. The first of these examples displays
the representation of agents of the class < robot >. Five bits are used for the
representation of 15 agents, which is inefficient, but allows meaningful building
blocks to occur. The second of these figures displays a more efficient representation
for objects of the class < fiz >. In this figure, four bits a2 used to encode 12
objects. Using a similar strategy, each class of symbols in the TAM is encoded.

In addition to representation of the symbols of each class, the GA must also
encode the symbols NULL, and BLANK. The second figure demonstrates the
encoding of a BLAN K node. Binary values that are not assigned to TAM symbols,
or the BLANK or NULL symbols are assigned to the symbol X X X which denotes

an invalid representation.

BITS:

4-3: 00 = <dex>, 01 = <pos>, 10 = <trans>
2. 0=light, 1=heavy

ENCODING:

00000:
00100:
01000:
01100:
1GCQ0:
10100:

EVA
GDMS
SRMS
ATD
MMU
omv

00001:
00101:
01001:
01101:
10001:
10101:

JRMS 00010: FTS
MRMS

SSRMS

APS

CETA 10010: MT
ORBITER

196

00011: SPDM

Figure 6.16: Representation example for agents in < robot > class

BITS:

3-2: 00 = <pins>, 01 = <clamps>, 10 = <grappler>,

11 = <fix-other>

1-0: 00 = heavy, 01 = medium, 10 = light

ENCODING:

0000:
0100:
1000:
1100:

1111:

PINS-H
CLAMP-H
GRAPPLER-H
WELDER

BLANK

<fix>
3 2 0
class
0001: PINS-M 0010: PINS-L
0101: CLAMP-M 0110: CLAMP-L
1001: GRAPPLER-M 1010: GRAPPLER-L
1101: BOLTER 1110: GLUEGUN

Figure 6.17: Representation example for agents in < fiz > class

197

198

For a given desired effect, a set of action symbols are allowed. These actions
symbols are assigned binary values between 0 and the number of allowed actions.
Since we know that the direct and indirec: objects of the robotic action must be
the same as the objects in the desired effect, they need not be explicitly represented
in the search string. Each GA member, therefore, consists of a concatenation of
binary strings for nodes on the ACTOR, ACTION, SLAVE, and TOOL levels. For

example, to represent the robotic action of the specific rule
MT STOW ORU MSC FTS GRAPPLER-M —

ORU 1S - STOWED — AT MSC

the GA member would be:
1001000101001

where the first 5 bits 10010 encode M T, the next bit, 0, encodes STOW, the next
three bits 010 encode FTS, and the last 4 bits encode GRAPPLER — M. ORU
and M SC are not encoded because they are implicitly stated by the desired effect.

The GA can produce binary strings that do not map to TAM symbols, through
its selection and recombination procedure. These binary representations map to
the XXX symbol described above. To inhibit the GA from developing invalid
representations, any binary string that maps to an XX X node is assigned a very
low POE value. This is called the “Penalty Method” for avoiding bad regions in the
domain of the GA. Over repeated iterations, the GA should be able to avoid invalid

representations by not promoting the building blocks that map to XX X nodes.

199

6.5.2 The GA search process

Given the representation of nodes, the GA search can be summarized as fol-

lows.

Given a Desired Effect,
1. The set of allowable nodes for each level is determined.

. For each level, the smallest class that subsumes all the allowable node symbols

N

is found.

w

. The length of a GA member is determined by summing the lengths of the
required binary representations of the class at each level. Let us call this

length 1.

.

. A random population of binary strings of length ! is created. Based on the re-
sults of section 4.3, we choose a population of 60 members with an immigration

rate of 2 members/iteration. We use a steady state GA.

. The cost of a member is the Energy value of the member when mapped to

(9]

TAM symbols and asserted on the network. The fitness of each member is

found using equation (4.6).

=2}

. The GA search process is run. The user may include the speciation algo-
rithm in the GA process, if desired. The process concludes when either of the

following occurs.

(2) The minimum cost member is found. This is the optimal robotic action,

and has the largest POE for the given desired effect.

(b) The best member in the population has a cost below a user-provided

threshold. This corresponds to a near optimal robotic action.

-3

. Depending on the inclusion of speciation, the GA responds with either

200

(a) the best robotic action found and the corresponding POE and cf values

or

(b) a set of near-optimal robotic actions with corresponding POE value and

cf values.

6.5.3 Embodying planning constraints into the recall process

It would be helpful if some features of the planning process could be incorpo-
rated into the associative recall process. This would allow the planning procedure
influence the search, and select or avoid certain robotic actions. Examples of helpful

features are:

1. The ability to inhibit the inclusion of particular agents in the robotic action.
This is useful when particular resources are not currently available to achieve

the desired effect, or the resources are otherwise constrained.

2. The ability to force the inclusion of particular agents in the robotic action.

This allows the planner to force a particular resource to be used.

3. The ability to leave part of the robotic action unspecified. This allows the

planner to leave rule variables uninstantiated.

4. The ability to leave part of the desired effect unspecified, and have it specified
by the recall process. This is helpful if the planner wants to find the best

direct or inairect object to be used to accomplish the desired effect.

One method for inhibiting the inclusion of a particular agent is to remove it
from the class of allowable nodes for that level. In effect, this maps the binary string
representing the agent to the XXX symbol, and yields a low POE value for any
robotic action containing that agent. Other methods can also be used.

On the other hand, forcing the inclusion of a particular agent can be achieved

by removing the portion of the binary string representing the agent’s level from the

et/

201

GA representation of the robotic action. The agent is is explicitly asserted on the
network with each robotic action. This similar to the assertion of direct or indirect
objects on the ARM network.

The planner may wish to leave part of the robotic action unspecified because it
does not want to instantiate a particular variable. This can be achieved by removing
the binary string representing the class of symbols for the variable’s level from the

.GA representation of the robotic action. By not asserting any node on an agent
level of the network, the POE value for each robotic action is now an upper bound
of possible POE values.

The planner may want the recall process to dictate the direct object or indirect
object to use. For example, the planner may provide the ARM with the desired
effect:

ORU IS — ATTACHED - TO < carrier >

This would force the recall process to find the carrier, and corresponding robotic
action, which produces the optimal POE value. This is particularly useful in an
environment with many similar resources available. The planner wishes to select
the resource that has the highest probability of leading to a successful plan.

This can be accomplished by finding the substring in the robotic action that
corresponds to the given variable, determining its symbolic mapping, and asserting
it on the input nodes. This still constrains the direct and indirect objects to be the

same in the robotic action and effect portions of the network.

6.5.4 Experimental procedure

Associative recall experiments were performed on the ARM network trained
with training sets 1 - 7 combined. The following desired effects were used for each

experiment, corresponding to the seven planning steps:

[y

. ORU IS-DEPLOYED NULL

2. ORU IS-DETACHED-FROM TRUSS

3. ORU IS-ATTACHED-TO < carrier >

4. < carrier > IS-AT MSC

5. ORU IS-DETACHED-FROM < carrier >
6. ORU IS-ATTACHED-TO MSC

7. ORU IS-STOWED-AT MSC

We can see that desired effects 3, 4 and 5 require the associative recall technique to
specify a carrier. The other desired effects use the standard recall procedure.

As demonstrated by the seven steps above, the ARM is used in this case
study to provide robotic actions for an ordered list of effects that have already been
provided by an external planning system. It is important to remember that the
ARM can also be used to limit the search space when developing these planning

steps, if combined with a search strategy such as Means-End Analysis.

6.5.5 Experimental results: Efficiency of the GA

The robotic action with the highest POE value (optimal robotic action) is
first determined for each desired effect through experimentation with the ARM
network. Each effect is then asserted on the network, and 500 experiments are run

to determine the average number of robotic actions that had to be evaluated to find

203

Table 6.2: Results of case study associative recall

Recall ezp. | Avg | Pos | Siz | Spe

1 340 | 1584 | 4096 -
364 | 792 | 2048 -
2198 | 20592 | 65536 | 2643
326 | 5940 | 32768 | 857
1148 | 4752 | 16384 | 1445
902 | 3432 | 8192 | 845

322 | 1170 | 4096 -

=1 O O W W

the optimal robotic action for the given desired effect. This is the same measure
used in Chapter 4, the number of function evaluations. A subset of the desired
effects are then chosen to test the speciation procedure

Table 6.2 presents the results of the experiments on the ARM network. This
table shows the average number of function evaluations that were required to find
the optimal robotic action for each desired effect (Avg), the total number of possible
robotic actions for the given effect (Pos), the size of the binary search space (Siz),
and the average number of function evaluations required to find the optimal robotic
action when using speciation (Spe). It is important to realize that the binary search
space is larger than the number of possible robotic actions due to representational
inefficiency in the encoding of robotic actions.

It is also important to note that each time a robotic action was evaluated,
it was counted, even if the same robotic action had been evaluated earlier in the
GA. For each GA run, therefore, some points were evaluated many times, with each
evaluation adding to the number of function evaluations for that GA run.

As demonstrated by experiments 1, 5, 6 and 7, the GA was able to find the
optimal robotic action by evaluating about % of the possible number of robotic
actions. Experiments 3 and 4, which had the largest search spaces, show a significant

reduction in the search time, each evaluating less than 1+ of the number of possible

204

search points. Experiment 2 shows the worst performance, requiring the evaluation
of about 1 of the possible number of robotic actions. Based on this information, the
GA seems to perform efficiently on all the optimization tasks, except those which
possess a small domain.

When compared to the total size of the search space, the GA operated very
efficiently, demonstrating that the Penalty Method was effective for avoiding invalid
robotic actions.

From this data, it seems that the chosen GA requires a minimum of about
300 evaluations to find the optimum value. even for the smaller search spaces. This

would indicate that for smaller search spaces:
e a smaller, more exploitive GA should be used, or
e simple enumeration of all robotic actions may be quite effective.

It is interesting to note that in three of the four experiments that included spe-
ciation, the average number of function evaluations increased less than 25 percent.
In experiment 4, the number of evaluations more than doubled, but was still small
compared to the possibie number of robotic actions. This indicates that the specia-
tion technique we chose leads to a less efficient GA, though one whose efficiency is

still acceptable for finding optimal robotic actions.

6.5.6 Experimental results: Optimal robotic actions

The GA found the following optimal robotic actions for the seven planning

steps of the goal plan using the ARM network trained on training sets 1 - 7 combined.

1. Desired eftect: ORU IS-DEACTIVATED NULL
Robotic Action: GDMS DEACTUATE ORU NULL NULL TOOLSET!
E = 0.0828; POE = 0.92; cf = 0.81

2. Desired effect: ORU IS-DETACHED-FROM TRUSS
Robotic Action: MRMS DETACH ORU TRUSS BLANK NULL
E= 0.0482; POE = 0.95; o =0.75

3. Desired effect: ORU IS-ATTACHED-TO < carrier >
Robotic Action: GDMS FASTEN ORU CARRIER-L FTS GRAPPLER-M
E= 0.000; POE = 0.99; cf=0.

4. Desired effect: < carrier > IS-AT MSC
Robotic Action: JRMS PLACE CARRIER-S MSC BLANK NULL
E = 0.051; POE = 0.95; c¢f = 1.0

5. Desired effect: ORU IS-DETACHED-FROM < carrier >
Robotic Action: GDMS DISCONNECT ORU CARRIER-L NULL SEPARA-
TOR
E = 0.0389; POE = 0.96; cf = 0.89

6. Desired effect: ORU IS-ATTACHED-TO MSC
Robotic Action: GDMS FASTEN ORU MSC FTS GRAPPLER-H
E = 0.0157; POE = 0.98; cf = 0.89

7. Desired effect: ORU IS-STOWED-AT MSC
Robotic Action: GDMS STOW ORU MSC FTS PINS-H
E = 0.1610; POE = 0.85; cf = 0.38

Many of the planning steps use the same actors, which allows for a conservation
of resources. This set of robotic actions will not achieve the goal state, however, due
to steps 3, 4 and 5. These robotic actions do not use the the same carrier, so the
OéU can’t be moved to the M SC successfully using these steps. To find a common

carrier that can be used in all three steps. 2 GA with speciation is applied.

206

The results of a sample speciation run yield the following robotic action alter-

natives for steps 3, 4 and 5:

Desired Effect: ORU IS-ATTACHED-TO < carrier >

e GDMS FASTEN ORU CARRIER-L FTS GRAPPLER-M
E = 0.0000; POE = 0.99; f = 0.81

GDMS FASTEN ORU CARRIER-L FTS GRAPPLER-H
E= 0.0160; POE = 0.98; o = 0.79

GDMS FASTEN ORU CARRIER-L FTS GLUEGUN
E = 0.0478; POE = 0.95; ¢f = 0.75

GDMS FASTEN ORU CARRIER-L FTS GRAPPLER-L
E = 0.0478; POE = 0.95; cf = 0.75

MRMS FASTEN ORU CARRIER-L FTS GLUEGUN
E = 0.0669; POE = 0.94; f = 0.62

e MRMS FASTEN ORU PALLET-L FTS GLUEGUN
E = 0.0891; POE = 0.91; f = 0.60

Desired Effect: < carrier > IS-AT MSC

o JRMS PLACE CARRIER-S MSC BLANK NULL
E =0.0512; POE =0.95;cf = 1.0

o JRMS POSITION CARRIER-S MSC NULL NULL
. E =0.0527: POE = 0.95; f = 0.79 '

e MT POSITION CARRIER-M MSC NULL NULL
E = 0.0602; POE = 0.94; cf = 0.44

207
¢ MT TRANSPORT CARRIER-M MSC NULL NULL
E = 0.0637; POE = 0.94; of = 0.28

o APS POSITION CARRIER-M MSC NULL NULL
E = 0.0641; POE = 0.94; cf = 0.44

e MT TRANSPORT CARRIER-L MSC NULL NULL
E= 0.0831; POE = 0.92; cf = 0.58

Desired Effect: ORU IS-DETACHED-FROM < carrier >

e GDMS DISCONNECT ORU CARRIER-L NULL SEPARATOR
E = 0.0390; POE = 0.96; ¢f = 0.89

e MRMS DETACH ORU PALLET-M SSRMS NULL
E = 0.0604; POE = 0.94; cf = 0.57

¢ MRMS DETACH ORU PALLET-M BLANK NULL
E = 0.0605; POE = 0.94; cf = 0.73

e JRMS DETACH ORU PALLET-M SSRMS NULL
E = 0.0606; POE = 0.94; cf = 0.57

o JRMS DETACH ORU PALLET-M SRMS NULL
E = 0.0606; POE = 0.94; cf = 0.57

o MRMS DETACH ORU PALLET-L ATD NULL
E = 0.0692; POE = 0.93; c¢f = 0.36

The speciation process did an excellent job of developing sets of robotic action
alternatives. Using these alternatives, the planner can select common carrier types

and can form the following plan.

208

1. Desired effect: ORU IS-DEACTIVATED NULL
Robotic Action: GDMS DEACTUATE ORU NULL NULL TOOLSET!
E = 0.0828; POE = 0.92; cf = 0.81

2. Desired effect: ORU IS-DETACHED-FROM TRUSS
Robotic Action: MRMS DETACH ORU TRUSS BLANK NULL
E= 0.0482; POE = 0.95; cf =0.75

3. Desired effect: ORU IS-ATTACHED-TO < carrier >
Robotic Action: GDMS FASTEN ORU CARRIER-L FTS GRAPPLER-M
E= 0.000; POE = 0.99; cf=0.

4. Desired effect: < carrier > IS-AT MSC
Robotic Action: MT TRANSPORT CARRIER-L MSC NULL NULL
E = 0.0831; POE = 0.92; ¢f = 0.58

5. Desired effect: ORU IS-DETACHED-FROM < carrier >
Robotic Action: GDMS DISCONNECT ORU CARRIER-L NULL SEPARA-
TOR
E = 0.0389; POE = 0.96; cf = 0.89

6. Desired effect: ORU IS-ATTACHED-TO MSC
Robotic Action: GDMS FASTEN ORU MSC FTS GRAPPLER-H
E = 0.0157; POE = 0.98; cf = 0.89

7. Desired effect: ORU IS-STOWED-AT MSC
Robotic Action: GDMS STOW ORU MSC FTS PINS-H
E = 0.1610: POE = 0.85; cf = 0.38

If desired, the planner may wish to reduce the number of agents used in the

plan, by replacing the M RM S in step 2 with the GDMS. The planner can query

209

the network with the specific rule
GDMS DETACH ORU TRUSS BLANK NULL —

ORU IS — DETACHED — FROM TRUSS

and determine that E = 0.0640, POE = 0.94, and ¢f = 0.75. The high POE and f
values determine that this robotic action will lead to a successful planning step, so
the substitution can occur.

This example, therefore, demonstrates the ability of the ARM to develop suc-

cessful plans given a set of desired effects.

6.6 Conclusions

This chapter presents a case study based on the NASA Flight Telerobotic
Servicer Task Analysis Methodology. The results presented in this chapter provide

the following evaluation of the ARM model.

1. The ability to represent general rules. The ARM is able to represent a set
general rules that contains groups of rules that lead to the same effect, and

rules that lead to multiple effects.

2. The ability to accurately store specific rules and corresponding POE values
from the training set. The training algorithm produces a very efficient repre-
sentation of each rule in the training set. Higher order nodes are created, and
pruned when necessary. Difficulty in developing higher order nodes can occur
if the rules in the training set do not overlap greatly, in which case most of

the for low POE values is placed on first order connections.

3. The ability to predict POE values for untested specific rules. The ARM is
able to develop the representations given in the training set. Subtle represen-

tations that the user may not see are also developed and may help the user to

210

create new robotic tests. The development of symbolic relationships leads to

reasonable predicted POE values for untested specific rules.

. The speed of associative recall of the optimal robotic action for each desired
effect of the plan. The GA is shown to be efficient as a recall procedure for
medium and large domain sizes. For smaller domains, the chosen GA is not

as efficient.

. The speed of associative recall of a set of near-optimal robotic actions for
each desired effect of the plan. Speciation results demonstrate some drop in
efficiency in the GA algorithm, but still provide acceptable results. Speciation

does an excellent job producing sets of high POE robotic actions.

7.1

CHAPTER 7
CONCLUSIONS

Summary and Conclusions

This thesis has described the design and implementation of the Associative

Rule Memory and has demonstrated its ability to function within a robotic planning

system. The motivation for this work is:

1.

The need for an evaluation function that ranks alternative robotic actions for
a planning step, in a world where many robotic actions can lead to the same

effect.

. The requirement that the evaluation function must efficiently find the optimal

robotic actions with respect to the evaluation function for a given desired

effect.

A desire to model the uncertainty inherent to robotic systems, and incorporate

this model into the planning of robotic actions.

Based on these needs, the ARM was designed to embody the following features:

. The ability to interface with a variety of planning systems through the use of

general and specific rules.

The storage of tested robotic action/desired effect pairings with probability of

effect values.
The storage of known symbol relationships, as provided by a user.

The ability to extract relationships between svmbols that affect POE values
and use these relationships to provide predictive POE values for untested

robotic action/desired effect pairings.

211

212

. The ability to provide as output, a set of high POE robotic actions that achieve

a desired effect, given the desired effect as input.

. The ability to produce a confidence factor that indicates the training received

by the weights of an untested robotic action/desired effect pairing.
The main contributions of this thesis are:

. The design of a neural network model, called the ARM, that is able to represent

a symbolic grammar comprised of a robotic action and effect.

. The ability of this model to maintain instantiations of the grammar with a real
valued number representing the probability that the robotic action achieves

the desired effect.

. A training procedure that guarantees that the ARM will develop accurate

POE representations for all specific rules in the training set.

. A training procedure that develops weighted connections that represent the
extent to which agents and actions of a robotic action can work together to

achieve a desired effect.

. A technique for adding higher order nodes when necessary, and pruning them

when they are unnecessary.

. A demonstration that the training procedure builds connections that can be

used for predicting POE values for untested specific rules.

. The addition of known agent relationships to the ARM model through the
use of knowledge rules and a confidence factor that provides the user with a

measure of confidence in untested specific rules.

. The demonstration that a Genetic Algorithm can be used to find the minimum

energy state of a Boltzmann Machine.

10.

11.

12.

7.2

213

The development of the immigration operator for Genetic Algorithms and
the demonstration that immigration improves the performance of a GA on

functions that possess difficult local optima.

The proof that a GA combined with the immigration operator will converge

in probability to the global optimum of a cost function.

The demonstration that the ARM can function as the Organization level of

the Intelligent Machine.

The development of a case study based on the Flight Telerobotic Servicer Task

Analysis Methodology that demonstrates

(a) the effectiveness of the training procedure,
(b) the efficiency of associative recall,

(c) and the use of the ARM on a complex, target world model.

Recommendations for Future Research

The following research items can extend the results presented in this thesis.

. Extending the ARM to multiple planning steps. The ARM is designed to

find the optimal robotic actions for a given desired effect. When developing
a sequence of planning steps, the set of robotic actions provided by the ARM
may require the use of many actors and objects in the world. To reduce the
number of resources required by a plan, it may be helpful to have the ARM
search for several sequential planning steps at once, under the constraint that

each planning step uses the same actor or set of objects.

One method for accomplishing this is to search several identical ARM models
at once, each model provided with a different desired effect as input. Each

model, therefore, corresponds to a different planning step. The robotic actions

Y

214

tested on each model are constrained to use the same resource, and a new cost
function is established to represent the sum of the Energy values for each
model. By minimizing the Energy function over the set of constrained robotic
actions, a set of steps are developed that have high POE values and reduce

the number of resources used.

Developing a system for providing specific rules. A system is needed to com-
pute POE values for tested robotic actions, and provide these robotic actions
to the ARM in the form of specific rules. Testing robotic actions in the envi-
ronment can be done by a user, or accomplished automatically. For example,
Miller [110], began development of an automatic, bottom-up system that in-

teracts with the environment and develops general and specific rules.

. The development of a complexity model. The ARM models the uncertainty

of specific rules. It is also important to have a measure of the complexity of
executing a robotic action. A combined measure of uncertainty and complexity

can be used to determine optimal robotic actions given a desired effect.

The development of concepts using the ARM model. Currently, the ARM
develops inhibition between symbols through the training set. Also, inhibition
is created by use of the knowledge rules. Prediction using the ARM is based
on this combined inter-symbol inhibition. It would be very useful if the ARM
model could abstract the symbols that inhibit each other to determine symbol
classes that should not be used together. This would provide valuable feedback

to the user.

Experimenting with different default probability values. The base POE value
for an untested rule in this thesis is 0.80, which indicates that most untested
specific rules should work well. This allows the ARM to output high POE

values for robotic actions that may be quite unlike any tested rule, and thereby

215

allows the planning system to explore more robotic actions. When planning,
it may be desirable to use a more conservative value, such as 0.50, to force the
ARM to produce robotic actions that are more similar to tested specific rules.
The effect that changing the base POE value has on recalled robotic actions

should be experimented with and analyzed.

. Accelerating the training technique. As mentioned in Chapter 3, it should be
possible to use an accelerated training technique, such as constrained conjugate
gradient, to reduce the training time required by the ARM. Since the training
is performed off-line, however, there may be little need for an accelerated

technique.

. Experimenting with higher order nodes. In Chapter 6, we determine that it
may be difficult to develop higher order nodes. Experiments should be per-
formed that reduce the maximum weight allowed on a first order connection.
This eases the development of higher order nodes. Experiments should be per-

formed to test the prediction capabilities of the ARM under these conditions.

- Evaluating immigration on a generational Genetic Algorithm. The exper-
iments performed in this thesis test immigration on a steady state and a
restarted GA. The immigration operator should also be tested on a gener-

ation GA using the same test suite of functions.

Literature Cited

(1] G. N. Saridis and H. E. Stephanou, “A hierarchical approach to the control
of a prosthetic arm,” IEEE Transactions on Systems, Man and Cybernetics,
vol. 7, no. 6, pp. 407-420, 1977.

[2] “Flight Telerobotic Servicer: Task analysis methodology,” tech. rep.,
Goddard Space Flight Center, Greenbelt, MD, 1989.

[3] R. E. Fikes and N. J. Nilsson, “STRIPS: A new approach to the application
of theorem proving to problem solving,” Artificial Intelligence, vol. 2, no. 3 4,
pp. 189-208, 1971.

(4] A. Newell and G. Ernst, “The search for generality,” in Information
Processing 65: Proceedings of IFIP Congress 1965 (W. A. Kalenich, ed.),
pp. 17-24, Washington, D. C.: Spartan Books, 1965.

[5] E. D. Sarcerdoti, “Planning in a hierarchy of abstraction spaces,” in Third
International Joint Conference on A rtificial Intelligence, (Stanford, CA),
pp. 412-422, 1973.

[6] E. D. Sarcerdoti, “The nonlinear nature of plans,” in Advance Papers of the
Fourth International Joint Conference on Artificial Intelligence, (Thilisi,
Georgia, USSR), pp. 206-214, 1975.

[7] M. Stefik, “Planning with constraints (MOLGEN: part 1),” Artificial
Intelligence, vol. 16, no. 2, pp. 111-140, 1981.

[8] M. Stefik, “Planning with constraints (MOLGEN: part 2),” Artificial
Intelligence, vol. 16, no. 2, pp. 141-170, 1981.

[9] A. Tate, “Generating project networks,” in International Joint Conference
on Artificial Inteligence, (Cambridge. MA), 1977.

[10] D. E. Wilkens, “Domain-independent planning: Representation and plan
generation,” Artificial Intelligence, vol. 22, no. 3, pp. 269-302, 1984.

(11} M. J. Rokey, “Remote Mission Specialist: A study in real-time, adaptive
planning,” IEEE Transactions on Robotics and Automation, vol. 6,
~ pp. 455-461, 1990.

[12] G. N. Saridis, “Toward the realization of intelligent controls,” IEEE
Proceedings. vol. 67, no. 8, pp. 1115-1133, 1979.

216

217

[13] G. N. Saridis, “Intelligent robotic control,” IEEE Transactions on Automatic
Control, vol. 28, no. 5, pp. 547-556, 1983.

(14] G. N. Saridis, “Control performance as an entropy,” Control Theory and
Advanced Technology, vol. 1, no. 2, 1985.

[15] G. N. Saridis, “On the revised theory of intelligent machines,” in Proceedings
of an International Workshop on Intelligent Robots and Systems, (Tsukuba,
Japan), September 1989.

[16] M. C. Moed and G. N. Saridis, “A Boltzmann machine for the organization
of intelligent machines,” IEEE Transactions on Systems, Man, and
Cybernetics, vol. 20, pp. 1094-1102, September 1990.

kY

[17] K. P. Valavanis, A Mathematical Formulation for the Analytical Design of
Intelligent Machines. PhD thesis, Rensselaer Polytechnic Institute, Troy,
NY, 1986.

(18] G. N. Saridis and K. P. Valavanis, “Analytical design of intelligent
machines,” Automatice, vol. 24, no. 2, pp. 123-133, 1988.

(19] L. Brownston, R. Farrell, E. Kant, and N. Martin, Programming Ezpert
Systems in OPS5. Addison-Wesley. 1986.

[20] C. Torras I Genis, “Relaxation and neural learning: Points of convergence
and divergence,” Journal of Paralle! Distributed Computing, vol. 6,
pp. 217-244, 1989.

[21] S. Grossberg, “Nonlinear neural networks: Principles, mechanisms, and
architectures,” Neural Networks, vol. 1, no. 1, pp. 17-62, 1988.

(22] R. P. Lippmann, “An introduction to computing with neural nets,” IEEE
ASSP Magazine, pp. 4-22, April 1987.

{23] G. E. Hinton, “Connectionist learning procedures,” Artificial Intelligence,
vol. 40, pp. 185-234, 1989.

[24] D. E. Rumelhart and J. L. McClelland, Paralle! Distributed Processing, Vol.
I. Cambridge, MA: The MIT Press, 1986.

[25] D. E. Rumelhart, G. E. Hinton, and R. J. Williams, “Learning internal
representations by error propagation.” in Parallel Distributed Processing
Volume I (D. E. Rumelhart and J. L. McClelland, eds.), pp. 318-362,
Cambridge, MA: The MIT Press, 1936.

[26] P. Werbos, Beyond regression: New tools for prediction and analysis in the
behavioral sciences. PhD thesis, Harvard University, Cambridge, MA, 1974.

[27]

[28]

[29]

[30]

[31]

(32]

[33]

(36]

[37)

(38]

(39]

218

R. J. Williams, “Towards a theory of reinforcement-learning connectionist
systems,” Tech. Rep. NU-CCS-88-3, College of Computer Science,
Northeastern University, Boston, MA, 1988.

M. W. Roth, “A survey of neural network technology for automatic target
recognition,” JEEE Transactions on Neural Networks, vol. 1, pp. 28-43, 1990.

W. Y. Huang and R. P. Lippmann. “Comparisons between neural net and
conventional classifiers,” in Proceedings of the IEEE First International
Conference on Neural Networks, (San Diego, CA), pp. 485-492, 1987.

D. W. Ruck, “Multisensor target detection and classification,” Master’s
thesis, AFIT/GE/ENG, Wright-Patterson AFB, Ohio, 1987.

K. S. Narendra and K. Parthasarathy, “Identification and control of
dynamical systems using neural networks,” JEEE Transactions on Neural
Networks, vol. 1, pp. 4-27, 1990.

P. J. Antsaklis, “Neural networks for control svstems,” IEEE Transactions
on Neural Networks, vol. 1, p. 148, 1990.

S. Y. Kung and J. N. Hwang, “Neural network architectures for robotic
applications,” [EEE Transactions on Robotics and Automation, vol. 5, no. 5,
pp. 641-657, 1989.

G. Josin, “Neural-space generalization of a topological transformation,”
Biological Cybernetics, vol. 39, pp. 283-290, 1988.

H. Mivamoto M. Kawato, T. Setoyama, and F. Suzuki,
“Feedback-error-learning neural network for trajectory control of a robotic
manipulator,” Neural Networks, vol. 1, pp. 251-263, 1988.

M. Kawato. Y. Uno, M. Isobe, and R. Suzuki, “Hierarchical neural network
model for voluntary movement with application to robotics,” IEEE Control
Systems Magazine, pp. 8-15, April 1988.

K. Goldberg and B. Pearlmutter, “Using a neural network to learn the

dynamics of the CMU Direct-Drive Arm II,” Tech. Rep. CMU-CS-88-160,
Carnegie Mellon University, Pittsburgh, PA, 1988.

D. S. Day, “Towards integrating automatic and controlled problerﬁ solving,”
in IEEE' First International Conference on Neural Networks, vol. 2, (San
Diego, CA), pp. 661-669. 1987.

S. Grossberg, “Adaptive pattern classification and universal recoding, i:
Parallel development and coding of neural feature detectors,” Biological
Cybernetics. vol. 23. pp. 121-134, 1976.

219

[40] S. Grossberg, Studies of mind and brain: Neural Principles of learning,
perception, development, cognition, and motor control. Boston: Reidel Press,
1982.

[41] S. Grossberg and N. A. Schmajuk, “Neural dynamics of adaptive timing and
temporal discrimination during associative learning,” Neural Networks,
vol. 2, no. 2, pp. 79-102, 1989.

[42] D. S. Levine and P. S. Prueitt, “Modeling some effects of frontal lobe
damage - novelty and perseveration,” Neural Networks, vol. 2, no. 2,
pp. 102-116, 1989.

[43] G. A. Carpenter and S. Grossberg, “A massively parallel architecture for a
self-organizing neural pattern recognition machine,” Computer Vision,
Graphics, and Image Processing, vol. 37, pp. 54-115, 1987. '

[44] J. J. Hopfield, “Neural networks and physical systems with emergent
collective computational abilities,” Proceedings of the National Academy of
Sciences, vol. 79, pp. 2554-2558, 1982.

[45] J. J. Hopfield, “Neurons with graded response have collective computational
properties like those of two-state neurons,” Proceedings of the National
Academy of Sciences, vol. 81, pp. 3088-3092, 1984.

[46] M. Zak, “Terminal attractors for addressable memory in neural networks,”
Physics Letters A, vol. 133, pp. 18-22, 1988.

[47] M. W. Hirsch, “Convergence in neural nets,” in [EEE First International
Conference on Neural Networks, vol. 2, (San Diego, CA), pp. 115-124, 1987.

[48] R. J. McEliece, E. C. Posner, E. R. Rodemich, and S. S. Venkatesh, “The
capacity of the Hopfield associative memory,” [EEE Transactions on
Information Theory, vol. IT-33, pp. 461-482, July 1987.

[49] S. Amari and K. Maginu, “Statistical neurodynamics of associative
memory,” Neural Networks, vol. 1, no. 1, pp. 63-73, 1988.

[50] J. J. Hopfield and D. W. Tank, “Neural computation of decisions in
optimization problems,” Biological Cybernetics, vol. 52, pp. 141-152, 1985.

[51] D. S. Touretzky, “Representing conceptual structures in a neural network,”
in IEEE First International Conference on Neural Networks, vol. 2, (San
- Diego, CA), pp. 279-286, 1987.

[52] G. E. Hinton, “Learning distributed representations of concepts,” in
Proceedings of the Eighth Annual Conference of the Cognitive Science
Society, pp. 1-12, 1986.

[3°]
[§*]
[}

[53] C. P. Dolan and M. G. Dyer, “Symbolic schemata, role binding and the
evolution of structure in connectionist memories,” in IEEE First
International Conference on Neural Networks, vol. 2, (San Diego, CA),
pp. 287-298, 1987.

[54] D. H. Ackley, G. E. Hinton, and T. J. Sejnowski, “A learning algorithm for
Boltzmann machines,” Cognitive Science, vol. 9, pp. 147-169, 1985.

[55] G. E. Hinton and T. J. Sejnowski, “Learning and relearning in Boltzmann
machines,” in Paralle! Distributed Processing Volume I (D. E. Rumelhart and
J. L. McClelland, eds.), pp. 282-317, Cambridge, MA: The MIT Press, 1986.

[56] H. J. Sussmann, “Learning algorithms for Boltzmann machines,” in
Proceedings of the 27th Conference on Decision and Control, (Austin, TX),
pp. 786-791, 1988.

[57] S. Kirkpatrick, C. D. Gelatt, and M. P. Vecchi, “Optimization by simulated
annealing,” Science, vol. 4398, pp. 671-680, 1983.

[58] G. E. Hinton and T. J. Sejnowski, “Separating figure from ground with a
Boltzmann machine,” in Vision, Brain, and Cooperative Computation (M. A.
Arbib and A. R. Hanson, eds.), pp. 703-724, Cambridge, MA: The MIT
Press, 1987.

[59] J. H. M. Korst and E. H. L. Aarts, “Combinatorial optimization on a
Boltzmann machine,” Journal of Parallel and Distributed Computing, vol. 6,
pp. 331357, 1989.

{60] D. E. Rumelhart, P. Smolensky, J. L. McClelland, and G. E. Hinton,
“Schemata and sequential thought processes in PDP models,” in Parallel
Distributed Processing Volume II (D. E. Rumelhart and J. L. McClelland,
eds.), pp. 7-5T7, Cambridge, MA: The MIT Press, 1986.

[61] H. Geffner and J. Pearl, “On the probabilistic semantics of connectionist
networks,” in I[EEE First International Conference on Neural Networks,
vol. 2, (San Diego, CA), pp. 187-195, 1987.

(62] J. Pearl, “Evidential reasoning using stochastic simulation of causal models,”
Artificial Intelligence, vol. 32, pp. 243-257, 1987.

63] J. Pearl, “Fusion, propagation, and structuring in belief networks,” Artificial
1% g 4
Intelligence, vol. 29, pp. 241-288, 1986.

[64] D. S. Touretzky and G. E. Hinton, “Symbols among the neurons: Details of
a connectionist inference architecture,” in Proceedings of the Ninth
International Joint Conference on Artificial Intelligence, (Los Angeles, CA),
pp. 239-243, 1985,

(A
[E¥]
—

[65] D. L. Luenberger, Linear and Nonlinear Programming, Second Edition.
Addison-Wesley, 1984.

[66] S. Matyas, “Random optimization,” Automatic Remote Control, vol. 26,
PP. 244-251, 1966.

[67] G. N. Saridis, “Expanding subinterval random search for system
identification and control,” [EEE Transactions on Automatic Control,
pp. 405-412, 1977,

[68] E. H. L. Aarts and J. H. M. Korst, Simulated Annealing and Boltzmann
Machines. Chichester: Wiley, 1988.

[69] S. Geman and D. Geman, “Stochastic relaxation, Gibbs distributions and
Bayesian restoration of images,” I[EEE Transactions on Pattern Analysis and
Machine Intelligence, vol. 6, pp. 721-741, November 1984.

[70] J. H. Holland, Adaptation in Natural and Artificial Systems. Ann Arbor, MI:
The University of Michigan Press, 1973.

[71] D. E. Goldberg, Genetic Algorithms in Search, Optimization and Machine
Learning. Addison-Wesley, 1989.

[72] K. A. De Jong, An Analysis of the Behavior of a class of Genetic Adaptive
Systems. PhD thesis, University of Michigan, Ann Arbor, MI, 1975.

[73] L. Davis, “Job shop scheduling with genetic algorithms,” in Proceedings of
an International Conference on Genetic Algorithms, pp. 136-140, 1985.

[74] L. Davis, “Applying adaptive algorithms to epistatic domains,” in
Proceedings of the 9th International Joint Conference On Artificial
Intelligence, pp. 162-164, 1985.

[75] D. E. Glover, “Solving a complex keyboard configuration problem through
generalized adaptive search,” in Genetic Algorithms and Simulated
Annealing (L. Davis, ed.), London: Pitman, 1987.

(76] J. E. Baker, “Reducing bias and inefficiency in the selection algorithm,” in
Proceedings of the Second International Conference on Genetic Algorithms
and their Applications, (Cambridge. MA), pp. 14-21, 1987.

[77] J. J. Grefenstette and J. E. Baker, “How genetic algorithms work: A critical
look at implicit parallelism,” in Proceedings of the Third International
Conference on Genetic Algorithms. pp. 20-27, 1989.

-~

[78] D. E. Goldberg, “Sizing populations for serial and parallel genetic
algorithms,” in Proceedings of the Third International Conference on Genetic
Algorithms, pp. 70-79, 1939.

[79]

(8]

(81]

[82]

[83]

[84]

[85]

[86]

(88]

[89]

222

L. J. Eshelman, R. A. Caruana, and J. D. Schaffer, “Biases in the crossover
landscape,” in Proceedings of the Third International Conference on Genetic
Algorithms, pp. 10-19, 1989.

J. P. Cohoon, S. U. Hegde, W. N. Martin, and D. Richards, “Punctuated
equilibria: A parallel genetic algorithm,” in Proceedings of the Second
International Conference on Genetic Algorithms and their Applications,
(Cambridge, MA), pp. 148-154, 1987.

D. E. Brown, C. L. Huntley, and A. R. Spillane, “A parallel genetic heuristic
for the quadratic assignment problem,” in Proceedings of the Third
International Conference on Genetic Algorithms, pp. 406-415, 1989.

H. Millenbein, “Parallel genetic algorithms, population genetics and
combinatorial optimization,” in Proceedings of the Third International
Conference on Genetic Algorithms, pp. 416-421, 1989.

M. Gorges-Schleuter, “ASPARAGOS an asynchronous parallel genetic
optimization strategy,” in Proceedings of the Third International Conference
on Genetic Algorithms, pp. 422-427, 1989.

C. C. Pettey and M. R. Leuze, “A theoretical investigation of a parallel
genetic algorithm,” in Proceedings of the Third International Conference on
Genetic Algorithms, pp. 398-405, 1989.

R. Tanese, “Distributed genetic algorithms,” in Proceedings of the Third
International Conference on Genetic Algorithms, pp. 434439, 1989.

H. J. Antonisse and K. S. Keller, “Genetic operators for high level knowledge
representation,” in Proceedings of the Second [nternational Conference on
Genetic Algorithms and their Applications, (Cambridge, MA), pp. 69-76,
1987.

J. J. Grefenstette, R. Gopal, B. J. Rosmaita, and D. V. Gucht, “Genetic
algorithms for the traveling salesman problem,” in Proceedings of an
International Conference on Genetic Algorithms, pp. 160-168, 1985.

L. Davis and S. Coomb, “Genetic algorithms and communication link speed
design: Theoretical considerations,” in Proceedings of an International
Conference on Genetic Algorithms and their Applications, (Cambridge, MA),
pp. 252-256, 1937.

J. D. Schaffer, R. A. Caruana, L. J. Eschelman, and R. Das, “A study of
control parameters affecting online performance of genetic algorithms for
function optimization,” in Proceedings of the Third International Conference
on Genetic Algorithms, pp. 51-60. 1989.

[90]

[91]

[92]

(93]

[94]

fo5]

[96]

[97]

[98]

[99]

[100]

[101]

-

[102]

D. H. Ackley, A Connectionist Machine for Genetic Hillclimbing. Kluwer
Academic Publishers, 1987.

L. Davis, “Adapting operator probabilities in genetic algorithms,” in
Proceedings of the Third International Conference on Genetic Algorithms,
pp. 61-69, 1989.

R. A. Caruana and J. D. Schaffer, “Representation and hidden bias: Gray
vs. binary coding for genetic algorithms,” in Proceedings of the Fifth Int.
Conf. on Machine Learning, pp. 153-161, 1988.

R. B. Hollstien, Artificial genetic adaptation in computer control systems.
PhD thesis, University of Michigan, Ann Arbor, MI, 1971.

D. E. Goldberg and J. Richardson, “Genetic algorithms with sharing for
multimodal function optimization,” in Proceedings of the Second

International Conference on Genetic Algorithms and their Applications,
(Cambridge, MA), pp. 4149, 1987.

K. Deb and D. E. Goldberg, “An investigation of niche and species
formation in genetic function optimization,” in Proceedings of the Third
International Conference on Genetic Algorithms, pp. 42-50, 1989.

G. N. Saridis. “Analytic formulation of the principle of increasing precision
with decreasing intelligence for intelligent rnachxnes, Automatica, vol. 25,
no. 3, pp. 461-467, 1989.

A. Levis, “Human organizations as distributed intelligence systems,” in
Proceedings of the First [FAC-IMACS Symposium on Distributed Intelligence
Systems, (Varna, Bulgaria), 1988.

G. N. Saridis, “Entropy formulation for optimal and adaptive control,” IEEFE
Transactions on Automatic Control. vol. 33, no. 8, pp. T13-721, 1988.

G. N. Saridis, Self-Organizing Controls of Stochastic Systems. New York:
Marcel Dekker, 1977.

J. R. Birk and R. B. Kelley, “An overview of the basic research needed to
advance the state of knowledge in robotics,” IEEE Transactions on Systems
Man, and Cybernetics, vol. 11, no. 8. pp. 575-379, 1981.

F. Y. Wang and G. N. Saridis, “A model for coordination of intelligent
machines using Petri nets,” in [EEE Symposium on Intelligent Control,
(Washington, D.C.), pp. 28-33, August 1988.

F. Y. Wang, A Coordination Theory for Intelligent Machines. PhD thesis,
Rensselaer Polyvtechnic Institute, Troy, NY, 1990.

[103]
[104]

[105]
[106]

[107]

[108]

[109]

[110]

224

K. J. Kyriakopoulos and G. N. Saridis, “Collision avoidance of mobile robots
in a non-stationary environment,” Control Systems Magazine, June 1991.

E. T. Jaynes, “Information theory and statistical mechanics,” Physical
Review, vol. 106, no. 4, pp. 620-630, 1957.

American Heritage Dictionary of the English Language. 1969.

R. C. Conant, “Laws of information which govern systems,” IEFE
Transactions on Systems, Man, and Cybernetics, vol. 6, no. 4, pp. 240-255,
1976.

T. Vamos, “Metalanguages - conceptual model: Bridge between machine and
human intelligence,” in Proceedings of the 1st International Symposium on
Al and Ezrpert Systems, pp. 237-287. 1987.

A. N. Kolmogorov, “On some asymptotic characteristics of completely
bounded metric systems,” Dok! Akad Nank, SSSR, vol. 108, no. 3,
pp. 385-389, 1956.

G. Zames, “On the metric complexity of causal linear systems, e-entropy and
e-dimension for continuous time,” JEEE Transactions on Automatic Control,
vol. 124, pp. 222-230, 1979.

S. A. Miller, “PRIME: A bottom-up approach to probabilistic rule
development,” Tech. Rep. CIRSSE 53, Rensselaer Polytechnic Institute,
Trov. NY, 1990.

APPENDIX A
SYMBOL DEFINITIONS

This appendix presents the list of the agent symbols used in the thesis and a de-

scription of what each symbol represents. These descriptions are modified slightly

from the NASA Flight Telerobotic Servicer Task Analysis Methodology [2].

e Telerobots

— Dextrous Manipulators

*

E'VA. An Extravehicular Astronaut. It is considered to function as
light, dextrous manipulator.

FTS. The Flight Telerobotic Servicer. This is a dextrous manipula-
tor, and can manpulate and lift relatively light objects.

GDMS. A dextrous manipulator which can manpulate and lift light
or heavy objects.

JRMS. Another dextrous manipulator which can manpulate and lift
light objects.

SPDM. Another dextrous manipulator which can manpulate and lift
light objects.

MRMS. Another dextrous manipulator which can manpulate and lift

light or heavy objects.

— Positioners

*

*

SRMS. The Shuttle Remote Manipulator System. This telerobot is
used to position light objects.
SRAMS. The Shuttle Remote Manipulator System. This telerobot is

used to position light objects.

225

*

*

*

226

SSRMS. The Space Station Remote Manipulator System. This teler-

obot is also used to position light objects.

APS. The Automatic Positioning System. This telerobot is used to
position heavy objects.

ATD. The Automatic Translation Device. This telerobot is used to

position heavy objects.

— Transporters

*

e Tools

CETA. The Crew and Equipment Transportation Aid. This teler-
obot is used to transport the EVA and moderately heavy equipment.
MMU. This telerobot is used to transport light manipulators and
light to moderately heavy equipment.

MT. The Mobile Transporter. This telerobot is used to transport
light to moderately heavy equipment.

OMYV. The Orbital Maneuvering Vehicle. This system is used to
transport light to very heavy equipment.

ORBITER. This system is used to transport light to very heavy

equipment.

— Fixturing

*

*

*

#*

*

BOLTER. A tool which bolts an object to another.

CLAMP-H. A clamp used to fixture heavy or large objects.
CLAMP-L. A clamp used to fixture small or light objects.
CLAMP-M. A clamp used to fixture medium size and weight ob jects.

GLUEGUN. A tool which glues an object to another using strong,

yet removeable, adhesive.

*

227

GRAPPLER-H. A grappler used to fixture heavy or large objects.
GRAPPLER-L. A grappler used to fixture small or light objects.
GRAPPLER-M. A grappler used to fixture medium size and weight

objects.

PINS-H. A pinning device used to fixture heavy or large objects.
PINS-L. A pinning device used to fixture small or light objects.
PINS-M. A pinning device used to fixture medium size and weiéht
objects.

WELDER. A tool which attaches an object to another using strong

adhesive.

— Dexfixturing

*

*

*

PRYBAR. A tool which aids in the separation of one object from
another.
SEPARATOR. A tool which aids in the separation of one object from

another.

DEMATOR. A tool which aids in the separation of one object from

another.

— Actuating

*

*

TOOLSETO. A toolset used by light manipulators.
TOOLSET1. A toolset used by light manipulators.
TOOLSET?2. A toolset used by light manipulators.
TOOLSETS. A toolset used by heavy manipulators.
TOOLSET4. A toolset used by heavy ma.n.ipulators.
TOOLSETS. A toolset used by two cooperating manipulators.

TOOLSETS. A toolset used by two cooperating manipulators.

[S%)
(=
e 4]

e Carriers and Parts

— CARRIER-H. A carrier that objects are fixtured to before transporting.

~ CARRIER-L. A carrier that only small or light objects are fixtured to

before transporting.

— CARRIER-M. A carrier that small, light or medium size or weight objects

are fixtured to before transporting.
— PALLET-H. A carrier that objects are fixtured to before transporting.

— PALLET-L. A carrier that only small or light objects are fixtured to

before transporting.

— PALLET-M. A carrier that small, light or medium size or weight objects

are fixtured to before transporting.

— ORU. An Orbital Replacement Unit. This is a module used in the Space

Station Environment. Its function can vary.

— TRUSS. This is the base Space Station structure.
e Sites

— AIRLOCK. The Shuttle airlock.

— AWP. The Assembly Work Platform. This platform is located in the
Space Station enviroment and serves as a place for telerobots to assemble

components of the Space Station.

— CARGO-BAY. The Cargo Bay of the Space Shuttle.

— MSC. The Mobile Servicing Center. This platform is located in the Space
Station environment and serves as a place for telerobots to service and

repair components of the Space Station.

V4
(Y |

APPENDIX B
SYMBOL CLASS HIERARCHY

This appendix presents a diagram of the hierarchy of symbol classes used in the
thesis. The diagram also presents the agent symbols that belong to each symbol

class.

[S]
(8]
o)

230

<dex>
<dexpos> -
<pos>
<robot>
<pos>
<postrans> l
<trans>
<fix>
<tools> <defix>
<active>
<objec> = .
<carmriers>
<parts>
<part-other>
]
CARGO-BAY
<sites> AIRLOCK
- AWP
MSC
| |

Figure B.1: Classification of agents in the world model

<dex>

<pos>

<trans>

<tools>

<parts>

Figure B.2: Classification of agents in the world model, cont'd

FTS GDMS
SPDM MRMS

EVA
SRMS
SSRMS
ATD

APS

MMU ORBITER

MT
CETA
oMV
<fix>
<defix>
<active>
CARRIER_L
<carners> CARRIER_M
CARRIER_S
| <part-other> ORU
TRUSS

PALLET_L
PALLET_M
PALLET_S

231

<fix> —

<defix>

<active>

Figure B.3: Classification of agents in the world model, cont’d

<grappler>

<clamps>

<pins>

<fix-other>

PRYBAR
SEPARATOR
DEMATOR
BLANK

<act_b>

<act_m>

<act_h>

GRAPPLER_ H GRAPPLER_L
GRAPPLER_M

CLAMPH CLAMP_L
CLAMP_M

PINS_H PINS_L
PINS_M

GLUEGUN BOLTER
WELDER

TOOLSETO0
TOOLSET!1
TOOLSET2

TOOLSET3
TOOLSET4

TOOLSETS
TOOLSET$6

232

